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Where do fluctuations in aggregate economic activity originate?

Shocks to all firms? Oil, credit conditions, monetary and fiscal policy. . .
▶ Empirically, leaves some aggregate variance unexplained

Shocks to huge firms? Idiosyncratic shocks, fat-tailed firm size distribution. . .
▶ Trouble explaining productivity comovement and firm-level risk

Shocks to networked firms? Idiosyncratic shocks, input-output networks. . .
▶ Trouble explaining productivity comovement, maybe also firm-level risk
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Where do fluctuations in aggregate economic activity originate?
From endogenous co-movement in firm-level productivity

Motivating evidence:

▶ Three stylized facts on firm-level co-movement using Compustat data

▶ Based on simple aggregate variance decomposition

Theoretical framework:

▶ Tractable DSGE production economy with multi-product, multi-technology firms

▶ Endogenous prob distributions and covariance for firm and aggregate productivity

Regression analysis:

▶ Plausibility check on key predictions of the model

▶ Tentative empirical support for TFP comovement hypothesis
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My work relates to three strands of literature in macro and finance

Origins of Aggregate Fluctuations:
▶ Herskovic et al. (2017), Carvalho and Gabaix (2013), Acemoglu et al. (2012), Gabaix (2011)
▶ Idiosyncratic shocks to large or “hub” firms generate aggregate fluctuations
▶ Me: Firm-level productivity comovement drives aggregate fluctuations

General Equilibrium Asset Pricing:
▶ Clementi and Palazzo (2018), Zhang (2017), İmrohoroğlu and Tuzel (2014)
▶ Idiosyncratic shocks and adjustment costs drive differences in risk
▶ Me: Differences in exposure to common shocks drive differences in risk

Endogenous Risk:
▶ Romer (2016), Carvalho and Grassi (2019), Stiglitz (2011), Danielsson and Shin (2003)
▶ Agents should choose their risks, chosen risks should become systemic
▶ Me: Firms choose their risks, making firm-level uncertainty endogenous
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A simple aggregate variance decomposition

For a firm variable xω and an aggregate variable X =
∑

ω∈Ω sωxω:

Var (X) =
∑
Ω

s2
ω Var (xω) +

∑
Ω

∑
Ω\{ω}

sωsω′ Cov (xω, xω′) =
∑
Ω

sω Cov (xω, X)

Stylized facts:
1. Aggregate variance comes mostly from pairwise covariances
2. High-productivity firms contribute more to aggregate variance
3. High-productivity firms contribute less per dollar of market value

TFP Details
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1. Aggregate variance comes mostly from pairwise covariances

1966 2015

50%

100%

Productivity Growth

1966 2015

Sales Growth

1966 2015

Profit Growth

Remarks:

▶ Weighted sum of pairwise covariances divided by aggregate variance

▶ Variances and covariances in 6-year rolling windows, Compustat 1966–2015
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2. High-productivity firms contribute most to aggregate variance
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Remarks:

▶ Weighted covariance between firm and aggregate, Compustat 1966–2015

▶ Decile median relative to cross-sectional median, averaged over 6-year rolling windows
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3. High-productivity firms contribute least per dollar of market value
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Remarks:

▶ Weighted covariance between firm and aggregate, relative to firm market value

▶ Decile median relative to cross-sectional median, averaged over 6-year rolling windows

2PCH
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Bottom line: Existing theories don’t capture all the evidence
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*As reported in İmrohoroğlu and Tuzel (2014)

Remarks:

▶ Aggregate fluctuations come
mostly from pairwise covariances,
not individual variances

▶ High-productivity firms contribute
most to aggregate fluctuations

▶ High-productivity firms contribute
least per dollar of market value

▶ This may help explain
high-productivity firms’ lower
excess returns
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Common technology shocks drive covariance patterns

Low

Mid

High

1. Heterogeneous firms

▶ Some firms managed well
▶ Others managed poorly

2. Heterogeneous technology

▶ Some technologies cheap
▶ Others expensive

3. Differentiated goods

▶ Goods are firm-tech specific
▶ Household consumes a basket

4. Common shocks

▶ Cheap technologies are systemic
▶ Low-prod firms are more exposed
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Firms earn profit using technology to produce differentiated goods

Firms indexed ω produce multiple varieties v, each with a different technology:

yt(v, ω) = z(ω)zt(v)
[
kt(v, ω)

]α[
lt(v, ω)

]1−α
, (1)

where zt(v) is stochastic, and z(ω) is not. Gross profit from each variety is:

πt(v, ω) = pt(v, ω)yt(v, ω) − rtkt(v, ω) − wtlt(v, ω). (2)

Remarks:

▶ Two productivities: firm-specific non-random z(ω), technology-specific random zt(v)
▶ Firms also pay a period fixed cost ft(v) for each technology
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Firms choose inputs and prices to maximize profit each period

Firms face downward-sloping demand for each variety:

ct(v, ω) =
[
pt(v, ω)

]−θ
Ct. (3)

Firms choose prices and production factors to maximize profit:

max{
kt(v,ω),
lt(v,ω),
pt(v,ω)

}
v∈V(ω)

Πt(ω) =
∫

V(ω)

πt(v, ω)λ(dv)

s.t. (1) and (31) ∀ v ∈ V(ω).

(4)

Firms must also choose their technology sets V(ω) ⊆ V = [v, ∞). First-Order Conditions
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Firms choose next-period technologies to maximize expected profit

Firms operate any technology v with positive expected net present value:

Et
[
mt,t+1

(
πt+1(v, ω) − ft+1(v)

)]
> 0. (5)

Firms pay a fixed cost to operate technology v each period:

ft+1(v) = Yt+1
µ

vγ . (6)

Remarks:

▶ No sunk cost to adopt or abandon a technology

▶ Fixed cost assumed to rise and fall with aggregate production
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Household maximizes expected discounted lifetime utility

The household maximizes utility:

max{
Cs,

Ks+1,
Ss+1(ω)

}
s∈Tt,
ω∈Ω

Ut = E
[ ∞∑

s=t

βs−t ln(Cs)
]

s.t. (9) and (10) ∀ s ≥ t,

(7)

where the consumption basket is

Ct =

 ∫
Ω

∫
V(ω)

[
ct(v, ω)

] θ−1
θ λ(dvdω)


θ

θ−1

. (8)

First-Order Conditions
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Household buys capital and consumption with its income
Budget constraint:

wtL + rtKt +
∫
Ω

[
Πt(ω) − Ft(ω)

]
St(ω)λ(dω)

= Ct + It +
∫
Ω

Vt(ω)
[
St+1(ω) − St(ω)

]
λ(dω).

(9)

Capital accumulation:
Kt+1 = It + (1 − δ)Kt. (10)

Remarks:

▶ Capital is produced in a separate sector to simplify goods market clearing

▶ I omit the primitives related to capital production here
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Households differentiate goods by producer and technology I

The household’s second stage problem:

max{
ct(v, ω)

}
v∈V,
ω∈Ω

Ct =

 ∫
Ω

∫
V(ω)

[
ct(v, ω)

] θ−1
θ λ(dvdω)


θ

θ−1

s.t. 1 =
∫
Ω

∫
V(ω)

pt(v, ω)ct(v, ω)λ(dvdω)

(11)

Remarks:

▶ Household optimally allocates resources among differentiated goods

▶ Goods are differentiated by producer and by production technology
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I’ve complicated the standard model—now what does it buy me?

What’s new here?

▶ Many technologies exist, each a distinct source of randomness (more uncertainty)

▶ Some technologies are cheap to operate, others are expensive (more heterogeneity)

▶ Each technology allows a firm to make a new differentiated good (additional margin)

What does this set-up buy me?

▶ A microeconomic explanation for aggregate fluctuations

▶ A microeconomic explanation for firm-level systematic risk

▶ All fluctuations and risk are endogenous to firm-level decisions!

Can’t come cheap, right? Wrong — no loss of tractability b/c model aggregates nicely
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Proposition 1: Aggregation lets us view the model at three levels

Economy-Wide: Yt = Zt

[
Kt

]α[
L
]1−α

Firm-Level: Yt(ω) = Zt(ω)
[
Kt(ω)

]α[
Lt(ω)

]1−α

Product-Level: yt(v, ω) = z(ω)zt(v)
[
kt(v, ω)

]α[
lt(v, ω)

]1−α

Remarks:

▶ Outputs Yt and Yt(ω) are each Dixit-Stiglitz aggregates of lower-level aggregates

▶ Aggregate factor demands and profit are also written in terms of Zt and Zt(ω)
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Proposition 1 (Aggregation)
A productivity aggregate over technologies summarizes all of the technological heterogeneity within an
individual firm ω:

Zt(ω) =

 ∫
V(ω)

[
z(ω)zt(v)

]θ−1
λ(dv)

 1
θ−1

. (12)

A productivity aggregate over firms summarizes all of the firm-specific and technological heterogeneity
within the consumption goods sector:

Zt =

 ∫
Ω

Zt(ω)θ−1λ(dω)

 1
θ−1

. (13)

Aggregate factor demands, production, and profit can be written in terms of aggregate productivities
and variables that either do not vary across firms, in the case of firm aggregates, or do not vary across
firms or technologies, in the case of economy-wide aggregates.

Derivation
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Integral sums of random variables? How is uncertainty preserved? I
A simple construction inspired by Al-Najjar (1995) preserves risk in the continuum:

zt(v)θ−1 := ϵt,⌈v⌉ ∀ v ∈ V,

with E = {ϵt,1, ϵt,2, . . . } a countable set of random variables, and with:

E [ϵt,n] = µϵ ∀ n ∈ N,

Var (ϵt,n) = σ2
ϵ ∀ n ∈ N,

Cov (ϵt,n, ϵt,m) = 0 ∀ n ̸= m, n, m ∈ N,

Cov (ϵs,n, ϵt,n) = 0 ∀ n ∈ N, s ̸= t ∈ Z.

Remarks:

▶ Each ϵn is associated with a unit interval of zt(v)’s, hence zt(v)’s are not independent

▶ Interpret ϵn’s as fundamental technologies, zt(v)’s as commercial applications
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Proposition 2: Technology sets are chosen by firms

v v(ω)

Et [mt,t+1πt+1(v, ω)]

Et [mt,t+1ft+1(v)]

E [Profit]

E [Loss]

•

•

Technology index v

Expected gross profit,
Period fixed cost

V(ω)
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Proposition 2 (Technology Sets)
In non-stochastic steady state, any firm ω with productivity z(ω) ≥ z chooses technology set
V(ω) =

{
v ∈ V : v ≤ v ≤ v(ω)

}
, where the endogenous cut-offs z and v(ω) are given by:

z =
(

θ

µϵ

) 1
θ−1

(14)

v(ω) =
(µϵ

θ

) 1
γ

z(ω)
θ−1

γ . (15)

Firms with z(ω) < z do not produce. Under parameter restrictions, firms ω1 and ω2 with
productivities z < z(ω1) < z(ω2) choose technology sets such that Vt(ω1) ⊂ Vt(ω2). The
above cut-offs are also first-order approximate to those that obtain in a stochastic
environment.

Derivation
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Proposition 3 (Endogenous First and Second Moments)
Let technology sets be those that firms choose in non-stochastic steady state. Then the first and
second moments of firm-level productivity are given by µ(ω) and σ2(ω), respectively:

µ(ω) = µϵz(ω)ζµω1

[(
z(ω)

z

)ζµω2

− 1

]
, (16)

σ2(ω) = σ2
ϵ z(ω)ζσω1

[(
z(ω)

z

)ζσω2

− 1

]
. (17)

The first and second moments of aggregate productivity are given by µ and σ2, respectively:

µ = µϵζµ1z
ζµ2 , (18)

σ2 = σ2
ϵ ζσ1z

ζσ2 . (19)

Under parameter restrictions, the first and second moments of all productivity aggregates are positive
and finite. For firms ω1 and ω2 with z(ω1) < z(ω2), we have µt(ω1) < µt(ω2) and σ2

t (ω1) < σ2
t (ω2).

FNZSM Intuition Derivation
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Well-managed firms have higher and more volatile productivity

Managerial Productivity z(ω)

Expected Firm
Productivity µ(ω)

Managerial Productivity z(ω)

Variance of Firm
Productivity σ2(ω)

Remarks:

▶ Ad-hoc parameterization β = 0.99, δ = 0.1, α = 0.25, θ = 3.8, κ = 3.4, γ = 6
▶ “Managerial productivity” is shorthand for firm-specific, non-technological productivity
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Proposition 4: Covariance driven by overlapping technology

Et [mt,t+1ft+1(v)]

Et [mt,t+1πt+1(v, ω1)]

•

•

Et [mt,t+1πt+1(v, ω2)]

•

•

Et [mt,t+1πt+1(v, ω3)]

•

•

Et [mt,t+1πt+1(v, ω4)]

•

•

Et [mt,t+1πt+1(v, ω5)]

•

•

v v(ω1) v(ω2) v(ω3) v(ω4) v(ω5)
Technology index v

Expected gross profit,
Period fixed cost
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Proposition 4 (Firm-Aggregate Covariance)
Let technology sets be those that firms choose in the non-stochastic steady state. Then the covariance
between firm and aggregate productivity, denoted by σωΩ(ω) = Cov

(
Zt(ω)θ−1, Zθ−1

t

)
, is given by

σωΩ(ω) = z(ω)θ−1ζωΩ1

[
1 −

(
z

z(ω)

)ζωΩ2
]

(20)

The covariance between firm and aggregate productivity, expressed as a fraction of firm market value,
is approximated to a first order by

σωΩ(ω)
Vt(ω) ≈ 1

Yt

 ζωΩ1

[
1 −

(
z

z(ω)

)ζωΩ2
]

ζV 1

(
z(ω)

z

)ζV 2

+ ζV 3

(
1

z(ω)

)ζV 4

−
(

1
z

)ζV 4

 . (21)

Under parameter restrictions, covariance-over-value falls for all z(ω) above a threshold. The ratio also
falls in the level of aggregate output.

Derivation
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Well-managed firms covary more w/ aggregate productivity,
but less per dollar of market value

Managerial Productivity z(ω)

Firm-Agg Prod
Cov σωΩ(ω)

Managerial Productivity z(ω)

Firm-Agg Prod
Cov over Value σωΩ(ω)

Vt(ω)

Remarks:

▶ Firm-aggregate productivity covariance is higher for high-productivity firms

▶ Covariance-over-value lower for high-productivity firms, as in Compustat data
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Proposition 5 (Stock Returns)
Let technology sets be those that firms choose in the non-stochastic steady state. Then firm
ω’s expected excess return is approximated to a second order by

Et [rt+1(ω) − rf,t+1] ≈ ζr1
µ(ω)
Vt(ω) + ζr2

σωΩ(ω)
Vt(ω) , (22)

where I define firm ω’s return as rt(ω) =
[
Vt+1(ω) + Πt+1(ω) − Ft+1(ω)

]
/Vt(ω), and the

risk-free rate as rf,t = m−1
t,t+1. Under parameter restrictions, expected excess returns

decrease in firm productivity z(ω) for all z(ω) above a threshold.

Derivation
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Does TFP help explain patterns in firm-level covariance?

Testable predictions:

1. Ceteris paribus, covariance between firm and aggregate growth rates
increases in firm-level total factor productivity.

2. Ceteris paribus, covariance between firm and aggregate growth rates
over market value decreases in firm-level total factor productivity.
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Compustat: Standard & Poor’s data on U.S. public firms I

Basic description:

▶ 50 years: 1966–2015

▶ about 7,500 firms

▶ about 20% of yearly GDP

▶ all industries covered

(Dis)advantages:

▶ Easy to access / replicate

▶ Not just manufacturing

▶ No small firms

▶ No private firms

1966 2015

35%
Compustat Value Added over Real GDP

1966 2015

3500
Yearly Number of Firms in Compustat

Details

Mullen (2025) — Aggregate Fluctuations 29/33



Does TFP help explain patterns in firm-level covariance?

sω Cov (xω, X)
Base = β0 + β1

(
Total Factor-
Productivityω

)
+ β2

(
Financial
Strengthω

)
+ β3

(
Other

Controlsω,Ω

)
+ ϵω,

Remarks:

▶ Base is either aggregate variance Var (X), or firm market value Vt(ω)
▶ Variables xω and X are productivity, sales, and profit growth

▶ Estimated dependent variable, so robust standard errors (Lewis and Linzer, 2005)

▶ Compustat diversification measures don’t work (Villalonga, 2004); Census data needed
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Regression: sω Cov (xω, X) / Var (X) on explanatory variables

Growth Rates

x, X = TFP Sales Profit

Olley-Pakes Total Factor Productivity 0.053∗ 0.052∗ 0.171∗∗∗

(0.028) (0.026) (0.037)

Debt-to-Book Equity 0.006 0.002 0.004
(0.005) (0.004) (0.004)

Quick Ratio −0.000 −0.001 0.001
(0.000) (0.001) (0.001)

Years in Compustat 0.022∗∗∗ −0.005 −0.001
(0.007) (0.007) (0.008)

Employment Share 0.124∗∗∗ 0.358∗∗∗ 0.253∗∗∗

(0.026) (0.034) (0.029)

R-squared 0.576 0.502 0.551
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Regression: sω Cov (xω, X) /Vt(ω) on explanatory variables

Growth Rates

x, X = TFP Sales Profit

Olley-Pakes Total Factor Productivity −0.059∗∗∗ −0.015∗∗ −0.033∗∗∗

(0.013) (0.008) (0.012)

Debt-to-Book Equity −0.018 0.005 0.003
(0.027) (0.013) (0.010)

Quick Ratio −0.008∗∗∗ −0.015∗∗∗ −0.011∗∗∗

(0.002) (0.004) (0.002)

Years in Compustat −0.103∗∗∗ −0.268∗∗∗ −0.144∗∗∗

(0.007) (0.008) (0.007)
Employment Share −0.000 0.012 0.035∗∗∗

(0.006) (0.010) (0.008)

R-squared 0.443 0.420 0.368

Robust standard errors in parentheses; * p<0.10, ** p<0.05, *** p<0.01

Mullen (2025) — Aggregate Fluctuations 32/33



On Aggregate Fluctuations, Systemic Risk, and the Covariance
of Firm-Level Activity

Introduction

Motivating Evidence

Theoretical Framework

Regression Analysis

Conclusion

Appendix



Summing up: what’s novel, what’s useful, why is it important?

Novelty: endogenous productivity comovement
1. firms choose their risks, and the chosen risks become systemic
2. firm-level productivity comovement as driver of aggregate fluctuations

Usefulness: highly tractable model
1. model aggregates, despite technology heterogeneity and choice problem
2. model preserves aggregate risk despite continuum of shocks (Al-Najjar, 1995)

Importance: post-crisis criticism of macro models
▶ Aggregate fluctuations, systemic risk, two huge post-crisis questions
▶ If risk is endogenous, policymakers can do more than react—they can preempt!
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Appendix

Profit Comovement

Model derivations

Olley-Pakes Productivity

Compustat Dataset

İmrohoroğlu and Tuzel (2014)

References



Can time-varying markups explains patterns in profit comovement? I
Back to evidence

Remarks:

▶ Evidence from Hong (2018), Bureau van Dijk French manufacturing

▶ Small firm markups more countercyclical, so profits less procyclical

▶ Detrended real GDP; markups estimated following De Loecker et al. (2017)
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Can earnings management distorts patterns in profit comovement? I
Back to evidence

Remarks:

▶ Evidence from Burgstahler and Dichev (1997), Compustat 1976–1994

▶ Empirical distribution of annual changes in profit over market value

▶ Small losses much less likely than “normal” to be reported
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First-Order Conditions I
Back to HH Problem Back to Firm Problem

Optimality conditions for the representative household. The household solves its utility maximization problem in two
stages. The two-stage budgeting procedure is possible here because the period utility function u(Cs) depends only
on the basket Ct, and Ct is homogeneous of degree one (Gorman, 1959). Consider the first-stage problem in (7).
Eliminate constraint (10) by substituting for It in (9). Use the method of Lagrangian multipliers to rewrite the
objective function as

L = E

 ∞∑
s=t

βs−tu(Cs) − βs−tλs

Cs + Ks+1 +
∫

ω∈Ω

Vs(ω)Ss+1(ω)λ(dω)

−wsL − (1 + rs − δ)Ks −
∫

ω∈Ω

[Vs(ω) − Πs(ω)]Ss(ω)λ(dω)

 . (23)
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First-Order Conditions II
Back to HH Problem Back to Firm Problem

To get first-order optimality conditions, equate with zero the first derivatives of L with respect to choice variables
Cs, Ks+1, Ss+1(ω), and λs for arbitrary period s and firm ω. The household’s optimal plans for consumption,
capital accumulation, and equity shares, respectively, satisfy the following conditions:

E
[
u′(Cs)

]
= E [λs] , (24)

E [λs] = βE [λs+1(1 + rs+1 − δ)] , (25)

E [λsVs(ω)] = βE [λs+1(Vs+1(ω) + Πs+1(ω))] . (26)

The household’s stochastic discount factor also derives from these conditions: set s = t and use (24) and (26) to
write firm ω’s period-t present value as

Vt(ω) = Et

[(
β

u′(Ct+1)
u′(Ct)

)(
Vt+1(ω) + Πt+1(ω)

)]
. (27)
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First-Order Conditions III
Back to HH Problem Back to Firm Problem

The one-period stochastic discount factor is then the first term in the expectation operator:
mt,t+1 = βu′(Ct+1)/u′(Ct) . Iterate (27) via Vt+1(ω) to get the multi-period stochastic discount factor. For any
period s ≥ t, write the latter as

mt,s = mt,t+1 · mt+1,t+2 · · · ms−1,s

= β
u′(Ct+1)

u′(Ct)
· β

u′(Ct+2)
u′(Ct+1)

· · · β
u′(Cs)

u′(Cs−1)
= βs−t u′(Cs)

u′(Ct)
.

(28)

Next, solve the household’s second-stage problem of allocating consumption across varieties ct(v, ω) within the
aggregate basket Ct. Let Pt(v, ω) be the nominal price of variety ct(v, ω), and Pt be the nominal price of the
consumption basket Ct. The household takes the optimal amount of aggregate consumption Ct as given by the
first-stage problem, and takes nominal prices as given, and maximizes its consumption of varieties for each unit of
expenditure 1 := PtCt, by solving eq. (11). Writing the Lagrangian,

L =

 ∫
Ω

∫
V(ω)

[
ct(v, ω)

] θ−1
θ λ(dvdω)

 θ
θ−1

+ λt

1 −
∫
Ω

∫
V(ω)

Pt(v, ω)ct(v, ω)λ(dvdω)

 .
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First-Order Conditions IV
Back to HH Problem Back to Firm Problem

Taking the first derivative of the Lagrangian with respect to consumption varieties ct(v, ω), ct(v′, ω′), and setting
equal to zero,

C−1
t ct(v, ω)− 1

θ = Pt(v, ω),

C−1
t ct(v′, ω′)− 1

θ = Pt(v′, ω′),

and the ratio of the two optimality conditions yields,(
ct(v, ω)

ct(v′, ω′)

)− 1
θ

=
Pt(v, ω)

Pt(v′, ω′)
. (29)
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First-Order Conditions V
Back to HH Problem Back to Firm Problem

Using eq. (29) in the expenditure constraint in eq. (11),

1 =
∫
Ω

∫
V(ω)

Pt(v, ω)ct(v, ω)λ(dvdω)

=
∫
Ω

∫
V(ω)

Pt(v, ω)
(

Pt(v′, ω′)
Pt(v, ω)

)θ

ct(v′, ω′)λ(dvdω)

= Pt(v′, ω′)θct(v′, ω′)
∫
Ω

∫
V(ω)

Pt(v, ω)1−θλ(dvdω).
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First-Order Conditions VI
Back to HH Problem Back to Firm Problem

Again using eq. (29), notice that the aggregate consumption basket can be written

Ct =

 ∫
Ω

∫
V(ω)

[
ct(v, ω)

] θ−1
θ λ(dvdω)

 θ
θ−1

=

 ∫
Ω

∫
V(ω)

[(
Pt(v, ω)

Pt(v′, ω′)

)−θ

ct(v′, ω′)
] θ−1

θ

λ(dvdω)

 θ
θ−1

= Pt(v′, ω′)θct(v′, ω′)

 ∫
Ω

∫
V(ω)

Pt(v, ω)1−θλ(dvdω)

 θ
θ−1

.
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First-Order Conditions VII
Back to HH Problem Back to Firm Problem

Now recall 1 = PtCt, and define pt(v, ω) := Pt(v, ω)/Pt. The above expressions imply the following price index
and demand curve:

1 =

 ∫
Ω

∫
V(ω)

[
pt(v, ω)

]1−θ
λ(dvdω)

 1
1−θ

, (30)

ct(v, ω) =
[
pt(v, ω)

]−θ
Ct. (31)

Optimality conditions for consumption goods producers. Consider firm ω’s profit maximization problem (4).
Eliminate constraints by using (1) and (31) to substitute for pt(v, ω) and yt(v, ω) in the firm-vintage profit function
(2) that appears in (4). Obtain first-order optimality conditions by equating with zero the first derivatives of Πt(ω)
with respect to choice variables kt(v, ω) and lt(v, ω) for arbitrary vintage v. Firm ω’s optimal choice of capital for
production with vintage v satisfies

kt(v, ω) = (α)
(

θ − 1
θ

)
(Yt)

1
θ [yt(v, ω)]

θ−1
θ (rt)−1. (32)
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First-Order Conditions VIII
Back to HH Problem Back to Firm Problem

Its optimal choice of labor satisfies

lt(v, ω) = (1 − α)
(

θ − 1
θ

)
(Yt)

1
θ [yt(v, ω)]

θ−1
θ (wt)−1. (33)

Notice that the optimal capital-labor ratio depends neither on the individual firm nor on the vintage of technology:

kt(v, ω)
lt(v, ω)

=
(

α

1 − α

)(
wt

rt

)
. (34)

Optimality conditions for capital goods producers. Now consider the profit maximization problem for the capital
goods producer. Take derivatives of gross profit with respect to the factors to obtain first-order conditions:

rt = αZt(kt)α−1(lt)1−α, (35)

wt = (1 − α)Zt(kt)α(lt)−α. (36)

Notice that the the capital-labor ratio in the capital goods sector is again

kt

lt
=
(

α

1 − α

)(
wt

rt

)
. (37)
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Derivation: Proposition 1 I
Back to proposition

The household and capital goods producer are representative, so aggregation pertains only to the final goods
sector.
Start with the optimality conditions (32) and (33) from the firm’s decision problem (4). These expressions contain
vintage-specific variables kt(v, ω), lt(v, ω), and yt(v, ω) as well as variables and parameters common to all
vintages. Combine equations (32) and (33) with the production function (1) to obtain expressions for kt(v, ω),
lt(v, ω), and yt(v, ω) in terms of zt(v) and variables and parameters common to all vintages:

kt(v, ω) = [z(ω)zt(v)]θ−1(Yt)
(

θ − 1
θ

)θ ( rt

α

)α(1−θ)−1 ( wt

1 − α

)(1−α)(1−θ)
, (38)

lt(v, ω) = [z(ω)zt(v)]θ−1(Yt)
(

θ − 1
θ

)θ ( rt

α

)α(1−θ) ( wt

1 − α

)(1−α)(1−θ)−1
, (39)

yt(v, ω) = [z(ω)zt(v)]θ(Yt)
(

θ − 1
θ

)θ ( rt

α

)−αθ ( wt

1 − α

)−(1−α)θ

. (40)
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Derivation: Proposition 1 II
Back to proposition

These expressions can be simplified further using an expression derived from the definition of the consumption
basket, along with (40) and market clearing:

Yt =

 ∫
Ω

∫
V(ω)

[yt(v, ω)]
θ−1

θ λ(dvdω)

 θ
θ−1

=
(

θ − 1
θ

)θ ( α

rt

)αθ (1 − α

wt

)(1−α)θ

(Yt)

∫
Ω

∫
V(ω)

(z(ω)zt(v))θ−1λ(dvdω)

 θ
θ−1

⇔ Zt :=

∫
Ω

∫
V(ω)

(z(ω)zt(v))θ−1λ(dvdω)

 1
θ−1

=
(

θ

θ − 1

)(
rt

α

)α ( wt

1 − α

)1−α

.

Mullen (2025) — Aggregate Fluctuations 12/72



Derivation: Proposition 1 III
Back to proposition

Now use the expression for Zt to simplify (38)–(40):

kt(v, ω) =
(

θ − 1
θ

)(
α

rt

)(
z(ω)zt(v)

Zt

)θ−1
Yt

lt(v, ω) =
(

θ − 1
θ

)(1 − α

wt

)(
z(ω)zt(v)

Zt

)θ−1
Yt

yt(v, ω) =
(

z(ω)zt(v)
Zt

)θ

Yt.

Now recall that pt(v, ω) = (yt(v, ω)/Yt)−(1/θ), and use above to get a similar expression for profit:

πt(v, ω) = pt(v, ω)yt(v, ω) − rtkt(v, ω) − wtlt(v, ω)

=
1
θ

(
z(ω)zt(v)

Zt

)θ−1
Yt.
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Derivation: Proposition 1 IV
Back to proposition

To get firm aggregates, sum the kt(v, ω)’s, lt(v, ω)’s, and πt(v, ω)’s, and use the Dixit-Stiglitz aggregator on
yt(v, ω):

Kt(ω) :=
∫

V(ω)

kt(v, ω)λ(dv) =
(

θ − 1
θ

)(
α

rt

)(
Zt(ω)

Zt

)θ−1
Yt

Lt(ω) :=
∫

V(ω)

lt(v, ω)λ(dv) =
(

θ − 1
θ

)(1 − α

wt

)(
Zt(ω)

Zt

)θ−1
Yt

Yt(ω) :=

 ∫
V(ω)

(yt(v, ω))
θ−1

θ λ(dv)

 θ
θ−1

=
(

Zt(ω)
Zt

)θ

Yt

Πt(ω) :=
∫

V(ω)

πt(v, ω)λ(dv) =
1
θ

(
Zt(ω)

Zt

)θ−1
Yt,
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Derivation: Proposition 1 V
Back to proposition

where

Zt(ω) :=

 ∫
V(ω)

(z(ω)zt(v))θ−1λ(dv)

 1
θ−1

.

Further rearrangement along the same lines yields the economy-wide aggregates. It is also possible to write
aggregate output in terms of a Cobb-Douglas aggregate production function, at both the firm and economy-wide
levels:

Yt(ω) = Zt(ω)[Kt(ω)]α[Lt(ω)]1−α (41)

Yt = Zt(Kt)α(Lt)1−α, (42)

where the production function arguments should be understood as optimal factor inputs that satisfy the firm’s
optimality conditions for from the profit maximization problem (see Felipe & Fisher, 2003, for a discussion).
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Derivation: Proposition 1 VI
Back to proposition

Notice that the firm-level aggregate production function takes the familiar Cobb-Douglas form. But remember that

the distribution of shocks is endogenous, and the underlying technology choice problem imposes additional

structure on the firm-level productivity multipliers. In particular, if technology sets V(ω) differs across firms, so too

will the distributions of the random productivity multipliers. And to the extent that technology sets share common

elements, firm-level productivity will covary. The next three propositions make these statements rigorous.
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Derivation: Proposition 2 I
Back to proposition

Firms choose their technology sets V(ω) ⊆ V = [v, ∞) ⊆ R+ to maximize profit. Recall that technologies differ in
their period fixed costs, but not their first two moments. Starting from the technology adoption rule in (5), and
rearranging:

0 < Et [mt,t+1(πt(v, ω) − fs(v))]

= Et

[
β

u′(Ct+1)
u′(Ct)

(πt(v, ω) − fs(v))
]

= Et

[ 1
Yt+1

(πt+1(v, ω) − ft+1(v))
]

,

where the third line assumes log utility. Now recall from the proof to 1:

πt(v, ω) =
1
θ

(
z(ω)zt(v)

Zt

)θ−1
Yt,

ft(v) =
Yt

µ
vγ .
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Derivation: Proposition 2 II
Back to proposition

Using these expressions in the adoption rule:

Et

[ 1
Yt+1

(πt+1(v, ω) − ft+1(v))
]

> 0

⇔
(

z(ω)θ−1

θ

)
Et

[(
zt(v)

Zt

)θ−1
]

≥
vγ

µ
.

From here, either evaluate the productivities in the ratio under the expectation operator at their expected values to
get an expression describing steady-state technology sets, or take an approximation of the expression under the
expectation operator. A first-order approximation gives the same results as the steady-state solution:

v(ω) =
(

µϵ

θ

) 1
γ

z(ω)
θ−1

γ

⇒ z(v) =
(

µϵ

θ

) 1
θ−1

v
γ

θ−1 .
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Derivation: Proposition 2 III
Back to proposition

Notice that the cut-off v(ω) increasing in z(ω), so the more productive firms produce more varieties and use more
technology.

Two remarks are in order: First, it is useful that the steady-state and first-order approximate cut-offs coincide,

because it means that first-order dynamics around the steady state are completely standard in this model. Second,

the second-order approximate case gives more interesting but less tractable results. There is a covariance term in

the second-oder approximation that varies with v—covariance is higher for commonly-used technologies.
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Derivation: Proposition 3 I
Back to proposition

Begin with the first moment of sector-aggregate productivity, just using the definition:

µ = E
[
Zθ−1

t

]
= E

∫
Ω

Zt(ω)θ−1λ(dω)


= E

∫
Ω

∫
V(ω)

(z(ω)zt(v))θ−1λ(dvdω)



= E

∫
V

∫
Ωv

(z(ω)zt(v))θ−1λ(dωdv)

 = E

∫
V

zt(v)θ−1

 ∫
Ωv

z(ω)θ−1λ(dω)

λ(dω)

 ,

where Ωv is the set of firms using vintage v, that is: Ωv := {ω ∈ Ω : z(v) < z(ω)}, and z(v) is the inverse of the
cost cut-off v(ω).
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Derivation: Proposition 3 II
Back to proposition

Now evaluate the inner integral:

∫
Ωv

z(ω)θ−1λ(dω) =

∞∫
z(v)

z(ω)θ−1h(z(ω))dz(ω)

=
[

κ

(θ − 1) − κ
z(ω)(θ−1)−κ

]∞

z(v)

=
(

κ

κ − (θ − 1)

)
z(v)(θ−1)−κ

=
(

κ

κ − (θ − 1)

)(
µϵ

θ

)κ−(θ−1)
θ−1

( 1
v

) γ[κ−(θ−1)]
θ−1

.
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Derivation: Proposition 3 III
Back to proposition

Substitute the evaluated integral back into the expression for µ:

µ = E
[
Zθ−1

t

]
=
(

κ

κ − (θ − 1)

)(
µϵ

θ

)κ−(θ−1)
θ−1

E

∫
V

zt(v)θ−1v
− γ[κ−(θ−1)]

θ−1 λ(dv)


=
(

κ

κ − (θ − 1)

)(
µϵ

θ

)κ−(θ−1)
θ−1

E

 ∞∫
v

zt(v)θ−1v
− γ[κ−(θ−1)]

θ−1 λ(dv)


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Derivation: Proposition 3 IV
Back to proposition

Use the definition of technological productivity zt(v) := ϵt,⌈v⌉, set v = 1, and write the remaining integral as:

E

 ∞∫
v

zt(v)θ−1v
− γ[κ−(θ−1)]

θ−1 λ(dv)

 = E

 ∞∫
v

ϵθ−1
t,⌈v⌉v

− γ[κ−(θ−1)]
θ−1 λ(dv)


= E

 2∫
1

ϵθ−1
t,2 v

− γ[κ−(θ−1)]
θ−1 λ(dv) +

3∫
2

ϵθ−1
t,3 v

− γ[κ−(θ−1)]
θ−1 λ(dv) + . . .


= µϵ

2∫
1

v
− γ[κ−(θ−1)]

θ−1 λ(dv) + µϵ

3∫
2

v
− γ[κ−(θ−1)]

θ−1 λ(dv) + . . . .
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Derivation: Proposition 3 V
Back to proposition

Now consider the integrals of the form:

n+1∫
n

v
− γ[κ−(θ−1)]

θ−1 λ(dv) =
[(

θ − 1
γ[κ − (θ − 1)] + (θ − 1)

)
v

−γ[κ−(θ−1)]+(θ−1)
θ−1

]n+1

n

=
(

θ − 1
γ[κ − (θ − 1)] + (θ − 1)

)[( 1
n

) γ[κ−(θ−1)]+(θ−1)
θ−1

−
( 1

n + 1

) γ[κ−(θ−1)]+(θ−1)
θ−1

]
.
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Derivation: Proposition 3 VI
Back to proposition

Returning to the expression for µ:

µ = E
[
Zθ−1

t

]
=
(

κ

κ − (θ − 1)

)(
µϵ

θ

)κ−(θ−1)
θ−1

µϵ

∞∑
n=1

(
θ − 1

γ[κ − (θ − 1)] − (θ − 1)

)
×

[( 1
n

) γ[κ−(θ−1)]+(θ−1)
θ−1

−
( 1

n + 1

) γ[κ−(θ−1)]+(θ−1)
θ−1

]

= µϵ

(
θ − 1

γ[κ − (θ − 1)] − (θ − 1)

)(
κ

κ − (θ − 1)

)(
µϵ

θ

)κ−(θ−1)
θ−1

.

Notice that
(

µϵ
θ

) 1
θ−1 appears on the right-hand side. Substituting it for z, and collecting parameters,

µ = µϵζµ1z
ζµ2 ,
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Derivation: Proposition 3 VII
Back to proposition

where

ζµ1 :=
(

θ − 1
γ[κ − (θ − 1)] − (θ − 1)

)(
κ

κ − (θ − 1)

)
ζµ2 := κ − (θ − 1)
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Derivation: Proposition 3 VIII
Back to proposition

Now turn to the second moment of sector-aggregate productivity. Starting again with the definition:

σ2 = Var
(

Zθ−1
t

)
= Var

∫
Ω

Zt(ω)θ−1λ(dω)

 = Var

∫
Ω

∫
V(ω)

(z(ω)zt(v))θ−1λ(dvdω)


= Var

∫
V

zt(v)θ−1
∫

Ωv

z(ω)θ−1λ(dωdv)


= Var

∫
V

zt(v)θ−1

∞∫
z(v)

z(ω)θ−1 κ

z(ω)κ+1 λ(dz(ω)dv)


= Var

∫
V

zt(v)θ−1 κ

(θ − 1) − κ
z(v)−[κ−(θ−1)]λ(dω)

 ,
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Derivation: Proposition 3 IX
Back to proposition

where from the third to the fourth line I change measure from Lebesgue to Pareto. Continuing, using

z(v) =
(

θ
µϵ

) 1
θ−1 v

γ
θ−1 ,

σ2 = Var
(

Zθ−1
t

)
= Var

∫
V

(
κ

(θ − 1) − κ

)(
θ

µϵ

)− κ−(θ−1)
θ−1

zt(v)θ−1v
−γ[κ−(θ−1)]

θ−1 λ(dω)


=
(

κ

κ − (θ − 1)

)2 ( θ

µϵ

)−2 κ−(θ−1)
θ−1

Var

∫
V

zt(v)θ−1v
− γ[κ−(θ−1)]

θ−1

 .
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Derivation: Proposition 3 X
Back to proposition

Now consider the integral:

∫
V

zt(v)θ−1v
− γ[κ−(θ−1)]

θ−1 λ(dω) =
∫
V

ϵt,⌈v⌉v
− γ[κ−(θ−1)]

θ−1 λ(dω) =

∞∫
v(ω)

ϵt,⌈v⌉v
− γ[κ−(θ−1)]

θ−1 λ(dω)

= ϵt,2

2∫
1

v
− γ[κ−(θ−1)]

θ−1 λ(dω) + ϵt,3

3∫
2

v
− γ[κ−(θ−1)]

θ−1 λ(dω) + . . .

=
∞∑

n=1

ϵt,n+1(θ − 1)
γ[κ − (θ − 1)] − (θ − 1)

×

[( 1
n

) γ[κ−(θ−1)]−(θ−1)
θ−1

−
( 1

n + 1

) γ[κ−(θ−1)]−(θ−1)
θ−1

]
.
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Derivation: Proposition 3 XI
Back to proposition

Returning to the expression for σ2:

σ2 = Var
(

Zθ−1
t

)
=
(

κ

κ − (θ − 1)

)2 ( θ

µϵ

)−2 κ−(θ−1)
θ−1

× Var

(
∞∑

n=1

ϵt,n+1(θ − 1)
γ[κ − (θ − 1)] − (θ − 1)

[( 1
n

) γ[κ−(θ−1)]−(θ−1)
θ−1

( 1
n + 1

) γ[κ−(θ−1)]−(θ−1)
θ−1

])

= σ2
ϵ

(
κ

κ − (θ − 1)

)2 ( θ

µϵ

)−2 κ−(θ−1)
θ−1

( (θ − 1)
γ[κ − (θ − 1)] − (θ − 1)

)2

×
∞∑

n=1

[( 1
n

) γ[κ−(θ−1)]−(θ−1)
θ−1

−
( 1

n + 1

) γ[κ−(θ−1)]−(θ−1)
θ−1

]2

.
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Derivation: Proposition 3 XII
Back to proposition

Notice that
(

µϵ
θ

) 1
θ−1 appears on the right-hand side. Substituting it for z, and collecting parameters,

σ2 = σ2
ϵ ζσ1z

ζσ2 ,

where

ζσ1 :=
(

κ

κ − (θ − 1)

)2 ( (θ − 1)
γ[κ − (θ − 1)] − (θ − 1)

)2 ∞∑
n=1

[( 1
n

) γ[κ−(θ−1)]−(θ−1)
θ−1

−
( 1

n + 1

) γ[κ−(θ−1)]−(θ−1)
θ−1

]2

ζσ2 := 2 [κ − (θ − 1)] .
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Intuition for finite, non-zero variance: It’s all about the weights
Back to proposition

Let X :=
∑N

n=1 anϵn, with iid ϵn’s and σ2
ϵ < ∞.

Var (X) = Var
(

N∑
n=1

anϵn

)
=

N∑
n=1

a2
nσ2

ϵ

Examples:

▶ an = 1
N ⇒ Var (X) = σ2

ϵ

N (Gabaix (2011)’s simplest example . . . )

▶ an =
( 1

N

)2 ⇒ Var (X) = σ2
ϵ

N3 (Faster convergence to zero . . . )

▶ an =
( 1

N

) 1
2 ⇒ Var (X) = σ2

ϵ (Doesn’t converge to zero . . . )

▶ an =
{

1 if n = 1
0 o.w.

⇒ Var (X) = σ2
ϵ (Weight bunched on one element . . . )
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So what are weights in my set-up? All bunched up. . .
Back to proposition

What determines weights here?

▶ Density and productivity of firms

▶ Set of firms using v shrinks fast as v ↑
▶ Faster if γ or κ large

Weights on technology shocks are of form:

an =
(

1
ζ

)2
[(

1
n

)ζ

−
(

1
n + 1

)ζ
]2

where ζ = 5 — e.g., γ = 6, θ = 3.5, κ = 4. ϵ1 ϵ2 ϵ3 ϵ4 ϵ5

a1

a2

a3

Shocks

W
ei

gh
ts
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Back Derivation: Proposition 4 I
To start, identify a specific firm ω1, use the definitions of Zt(ω1) and Zt in the covariance expression, and the
cut-offs z and v(ω) for the integral bounds:

σωΩ(ω) = Cov
(

Zt(ω1)θ−1, Zθ−1
t

)
= Cov

 ∫
Vt(ω1)

[z(ω1)zt(v)]θ−1λ(dv),
∫
Ω

Zt(ω)θ−1λ(dω)


= Cov

 v(ω1)∫
v=1

[z(ω)zt(v)]θ−1λ(dv),

∞∫
z

v(ω)∫
v=1

[z(ω)zt(v)]θ−1λ(dvdω)

 .
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Back Derivation: Proposition 4 II
Now consider the first integral:

v(ω1)∫
v=1

[z(ω1)zt(v)]θ−1λ(dv) = z(ω1)θ−1

v(ω1)∫
v=1

ϵt,⌈v⌉λ(dv)

= z(ω1)θ−1

 2∫
1

ϵt,2λ(dv) +

3∫
2

ϵt,3λ(dv) + · · · +

v(ω)∫
v(ω)−1

ϵt,v(ω)λ(dv)


= z(ω1)θ−1

v(ω)−1∑
n=1

ϵt,n+1,

where I have assumed w.l.g. that v(ω) ∈ N.
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Back Derivation: Proposition 4 III
Now consider the second integral:

∞∫
z

v(ω)∫
v=1

[z(ω)zt(v)]θ−1λ(dvdω) =

∞∫
v=1

zt(v)θ−1

 ∞∫
z(v)

z(ω)θ−1λ(dω)

λ(dv)

=

∞∫
v

zt(v)θ−1

 ∞∫
z(v)

z(ω)θ−1h(z(ω))λ(dz(ω))

λ(dv)

=

∞∫
v

zt(v)θ−1 κ

κ − (θ − 1)
z(v)−[κ−(θ−1)]λ(dv),
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Back Derivation: Proposition 4 IV
where line two changes measure from Lebesgue to Pareto. Continuing with the second integral, using

z(v) =
(

θµ
µϵ

) 1
θ−1 v

γ
θ−1 ,

∞∫
z

v(ω)∫
v=1

[z(ω)zt(v)]θ−1λ(dvdω) =
(

κ

κ − (θ − 1)

)(
θµ

µϵ

)−[κ−(θ−1])
θ−1

∞∫
v

zt(v)θ−1v
−γ[κ−(θ−1)]

θ−1 λ(dv).

Now the single integral on the right-hand side:

∞∫
v

zt(v)θ−1v
−γ[κ−(θ−1)]

θ−1 λ(dv) =

∞∫
v=1

ϵθ−1
t,⌈v⌉v

−γ[κ−(θ−1)]
θ−1 λ(dv)

= ϵt,2

2∫
1

v
−γ[κ−(θ−1)]

θ−1 λ(dv) + ϵt,3

3∫
2

v
−γ[κ−(θ−1)]

θ−1 λ(dv) + . . .

.
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Back Derivation: Proposition 4 V
Now consider the integrals of the form:

n+1∫
n

v
γ[κ−(θ−1)]

θ−1 λ(dv) =
[(

θ − 1
γ[κ − (θ − 1)] + (θ − 1)

)
v

γ[κ−(θ−1)]+(θ−1)
θ−1

]n+1

n

=
(

θ − 1
γ[κ − (θ − 1)] + (θ − 1)

)[( 1
n

) γ[κ−(θ−1)]+(θ−1)
θ−1

−
( 1

n + 1

) γ[κ−(θ−1)]+(θ−1)
θ−1

]
.

So the single integral becomes:

∞∫
v

zt(v)θ−1v
−γ[κ−(θ−1)]

θ−1 λ(dv) =
(

θ − 1
γ[κ − (θ − 1)] + (θ − 1)

)

×
∞∑

n=1

ϵt,n+1

[( 1
n

) γ[κ−(θ−1)]+(θ−1)
θ−1

−
( 1

n + 1

) γ[κ−(θ−1)]+(θ−1)
θ−1

]
,

Mullen (2025) — Aggregate Fluctuations 38/72



Back Derivation: Proposition 4 VI
and the second integral becomes:

∞∫
z

v(ω)∫
v=1

[z(ω)zt(v)]θ−1λ(dvdω) =
(

κ

κ − (θ − 1)

)(
θµ

µϵ

)−[κ−(θ−1])
θ−1

(
θ − 1

γ[κ − (θ − 1)] + (θ − 1)

)

×
∞∑

n=1

ϵt,n+1

[( 1
n

) γ[κ−(θ−1)]+(θ−1)
θ−1

−
( 1

n + 1

) γ[κ−(θ−1)]+(θ−1)
θ−1

]
.
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Back Derivation: Proposition 4 VII
Now, recall that Cov (ϵt,n, ϵt,m) = 0 ∀ n ̸= m, and write the desired covariance as:

σωΩ(ω) = Cov
(

Zt(ω1)θ−1, Zθ−1
t

)
= z(ω1)θ−1

(
κ

κ − (θ − 1)

)(
θµ

µϵ

)−[κ−(θ−1])
θ−1

(
θ − 1

γ[κ − (θ − 1)] + (θ − 1)

)
× Cov

(
v(ω)−1∑

n=1

ϵt,n+1,

∞∑
n=1

ϵt,n+1

[( 1
n

) γ[κ−(θ−1)]+(θ−1)
θ−1

−
( 1

n + 1

) γ[κ−(θ−1)]+(θ−1)
θ−1

])

= z(ω1)θ−1
(

κ

κ − (θ − 1)

)(
θµ

µϵ

)−[κ−(θ−1])
θ−1

(
θ − 1

γ[κ − (θ − 1)] + (θ − 1)

)
×

v(ω)−1∑
n=1

[( 1
n

) γ[κ−(θ−1)]+(θ−1)
θ−1

−
( 1

n + 1

) γ[κ−(θ−1)]+(θ−1)
θ−1

]
Cov (ϵt,n+1, ϵt,n+1)

,
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Back Derivation: Proposition 4 VIII
where Cov (ϵt,n+1, ϵt,n+1) = σ2

ϵ .
Notice that the right-hand side summation, with a as a temporary placeholder, is of form:

v(ω1)−1∑
n=1

[( 1
n

)a

−
( 1

n + 1

)a]
=
[(1

1

)a

−
(1

2

)a

+
(1

2

)a

−
(1

3

)a

+ · · · −
( 1

v(ω1)

)a]
=
[

1 −
( 1

v(ω1)

)a]
.
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Back Derivation: Proposition 4 IX
Returning to the covariance expression, and simplifying the summation as above,

σωΩ(ω) = Cov
(

Zt(ω1)θ−1, Zθ−1
t

)
= σ2

ϵ z(ω1)θ−1
(

κ

κ − (θ − 1)

)(
θµ

µϵ

)−[κ−(θ−1])
θ−1

(
θ − 1

γ[κ − (θ − 1)] + (θ − 1)

)
×

[
1 −
( 1

v(ω1)

) γ[κ−(θ−1)]+(θ−1)
θ−1

]

= σ2
ϵ z(ω1)θ−1

(
κ

κ − (θ − 1)

)(
θµ

µϵ

)−[κ−(θ−1])
θ−1

(
θ − 1

γ[κ − (θ − 1)] + (θ − 1)

)
×

[
1 −
(

θµ

µϵ

) γ[κ−(θ−1)]
γ(θ−1)

( 1
z(ω1)

) γ[κ−(θ−1)]
γ

]

where the last line uses v(ω1) =
(

µϵ
θµ

) 1
γ z(ω1)

θ−1
γ .
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Back Derivation: Proposition 4 X
Finally, collect parameters, return from specific ω1 to arbitrary ω, and write:

σωΩ(ω)
σ2

ϵ

= z(ω)θ−1ζωΩ1

[
1 −
(

z

z(ω)

)ζωΩ2
]

, where

ζωΩ1 =
(

κ

κ − (θ − 1)

)(
θµ

µϵ

)−[κ−(θ−1)]
θ−1

(
θ − 1

γ[κ − (θ − 1)] + (θ − 1)

)

ζωΩ1 =
γ[κ − (θ − 1)]

γ
.

Recall that the µ appearing in ζωΩ1 has already been expressed in terms of parameters, so the above expression
suffices.
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Back Derivation: Proposition 4 XI
Now turn to covariance over market value. Start from the following primitives:

Vt(ω) = Et

[
∞∑

s=t+1

βs−t u′(Cs)
u′(Ct)

(
Πs(ω) − Fs(ω)

)]

Πs(ω) =
∫

V(ω)

πs(v, ω)λ(dv) =
1
θ

(
Zs(ω)

Zs

)θ−1
Ys

Fs(ω) =
∫

V(ω)

Ys

µ
vγλ(dv).

Using u(Cs) = ln(Cs) and above primitives, rearrange to get:

Vt(ω)
Yt

= E

 ∞∑
s=t+1

βs−t

1
θ

(
z(ω)
Zs

)θ−1 ∫
V(ω)

zs(v)θ−1 −
vγ

µ
λ(dv)


 .

Mullen (2025) — Aggregate Fluctuations 44/72



Back Derivation: Proposition 4 XII
Split up the integral and evaluate the first term, assuming w.l.g. that v(ω) ∈ N:

∫
V(ω)

zs(v)θ−1λ(dv) =

v(ω)∫
v=1

ϵs,⌈v⌉λ(dv)

=

2∫
1

ϵs,2λ(dv) +

3∫
2

ϵs,3λ(dv) + · · · +

v(ω)∫
v(ω)−1

ϵs,v(ω)λ(dv)

=
v(ω)−1∑

n=1

ϵs,n+1

Now evaluate the second part of the integral that we split above:∫
V(ω)

vγ

µ
λ(dv) =

1
µ

(
v(ω)γ+1

γ + 1
−

1
γ + 1

)
.
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Back Derivation: Proposition 4 XIII
Substituting back into the expression for firm value,

Vt(ω)
Yt

=
∞∑

s=t+1

βs−t z(ω)θ−1

θ

v(ω)−1∑
n=1

E
[

ϵs,n+1

Zθ−1
s

]
−

∞∑
s=t+1

βs−t

(
v(ω)γ+1

1 + γ
−

1
1 + γ

)

To a first-order approximation, the expectation is: E
[

ϵs,n+1
Zθ−1

s

]
≈ µϵ

µ
. Simplifying,

Vt(ω)
Yt

≈ z(ω)
1+γ

γ
(θ−1)

(
µϵ

θµ

) 1+γ
γ
(

γ

1 + γ

)
− z(ω)θ−1

(
µϵ

θµ

)
+
( 1

1 + γ

)
Now combining with the covariance expression derived above:

σωΩ(ω)
Vt(ω)

≈
σ2

ϵ

Yt
·

z(ω)θ−1
(

θ−1
γ[κ−(θ−1)]−(θ−1)

)[
1 −
(

θµ
µϵ

) γ[κ−(θ−1)]−(θ−1)
γ(θ−1)

(
1

z(ω)

) γ[κ−(θ−1)]−(θ−1)
γ

]
z(ω)

1+γ
γ

(θ−1) ( µϵ
θµ

) 1+γ
γ
(

γ
1+γ

)
− z(ω)θ−1

(
µϵ
θµ

)
+ 1

1+γ

.
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Back Derivation: Proposition 4 XIV
Finally, using the expression for z, and collecting parameters to simplify,

σωΩ(ω)
Vt(ω)

≈
1
Yt

 ζωΩ1

[
1 −
(

z

z(ω)

)ζωΩ2
]

ζV 1

(
z(ω)

z

)ζV 2
+ ζV 3

(
1

z(ω)

)ζV 4 −
(

1
z

)ζV 4

 , where

ζωΩ1 := zθ−1
(

σ2
ϵ (θ − 1)

γ[κ − (θ − 1)] − (θ − 1)

)
, ζωΩ2 :=

(
γ[κ − (θ − 1)] − (θ − 1)

γ

)

ζV 1 =
(

γ

1 + γ

)
, ζV 2 :=

(
θ − 1

γ

)
, ζV 3 :=

( 1
γ + 1

)
, ζV 4 := (θ − 1) .
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Back Derivation: Proposition 5 I
Start with the definition of firm ω’s stock return:

rt+1(ω) =
Vt+1(ω) + Πt+1(ω) − Ft+1(ω)

Vt(ω)

=
E
[∑∞

s=t+2 mt+1,s(Πs(ω) − Fs(ω))
]

+ Πt+1(ω) − Ft+1(ω)
Vt(ω)

=
Yt+1E

[∑∞
s=t+1 βs−(t+1)

(Πs(ω)
Ys

− Fs(ω)
Ys

)]
Vt(ω)

,
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Back Derivation: Proposition 5 II
where the third line assumes log utility and uses the definition of the household stochastic discount factor. Now
take the time-t conditional expectation:

Et [rt+1(ω)] = Et

[
Yt+1Et+1

[∑∞
s=t+1 βs−(t+1)

(Πs(ω)
Ys

− Fs(ω)
Ys

)]
Vt(ω)

]

=
Et [Yt+1] Et

[
Et+1

[∑∞
s=t+1 βs−(t+1)

(Πs(ω)
Ys

− Fs(ω)
Ys

)]]
Vt(ω)

+
Covt

(
Yt+1, Et+1

[∑∞
s=t+1 βs−(t+1)

(Πs(ω)
Ys

− Fs(ω)
Ys

)])
Vt(ω)

=
Et [Yt+1]

βYt
+

Covt

(
Yt+1, Et+1

[∑∞
s=t+1 βs−(t+1)

(Πs(ω)
Ys

− Fs(ω)
Ys

)])
Vt(ω)

⇔ Et

[
rt+1(ω) − rf,t+1

]
=

Covt

(
Yt+1, Et+1

[∑∞
s=t+1 βs−(t+1)

(Πs(ω)
Ys

− Fs(ω)
Ys

)])
Vt(ω)

.
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Back Derivation: Proposition 5 III
Consider the covariance term separately, recalling that zero serial correlation is assumed for ϵs,ns:

Covt

(
Yt+1, Et+1

[
∞∑

s=t+1

βs−(t+1)
(Πs(ω)

Ys
−

Fs(ω)
Ys

)])
= Covt

(
Yt+1,

(Πt+1(ω)
Yt+1

−
Ft+1(ω)

Yt+1

))
= Et [Πt+1(ω) − Ft+1(ω)] − Et [Yt+1] Et

[Πt+1(ω)
Yt+1

−
Ft+1(ω)

Yt+1

]
= Et

Yt+1

∫
V(ω)

1
θ

(
z(ω)zt+1(v)

Zt+1

)θ−1
λ(dv)

− Et [Yt+1] Et

 ∫
V(ω)

1
θ

(
z(ω)zt+1(v)

Zt+1

)θ−1
λ(dv)


= Et

[
1
θ

Yt+1

(
Zt+1(ω)

Zt+1

)θ−1
]

− Et [Yt+1] Et

[
1
θ

(
Zt+1(ω)

Zt+1

)θ−1
]

,
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Back Derivation: Proposition 5 IV
where the second line uses the assumption of zero serial correlation. Now recall from (41) that
Yt+1 = Zt+1(Kt+1)α(L)1−α, that Kt+1 is determined in t, and that L fixed, so

Covt

(
Yt+1, Et+1

[
∞∑

s=t+1

βs−(t+1)
(Πs(ω)

Ys
−

Fs(ω)
Ys

)])

=
(Kα

t+1L1−α)
θ

(
Et

[
Zt+1(ω)θ−1

Zθ−2
t+1

]
− Et [Zt+1] Et

[(
Zt+1(ω)

Zt+1

)θ−1
])

Next, second-order approximate the individual right-hand side expectations around the non-stochastic steady state
values µ(ω) and µ. Starting with the first right-hand side expectation:

Et

[
Zt+1(ω)θ−1

Zθ−2
t+1

]
≈

µ(ω)

µ
θ−2
θ−1

+
1
2

(
θ − 2
θ − 1

)(
θ − 2
θ − 1

+ 1
)

µ(ω)

µ
θ−2
θ−1 +2

· σ2 −
1
2

(
θ − 2
θ − 1

) 1

µ
θ−2
θ−1 +1

· σωΩ(ω).
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Back Derivation: Proposition 5 V
Now the second:

Et [Zt+1] ≈ µ
1

θ−1 +
1
2

( 1
θ − 1

)( 1
θ − 1

− 1
)

µ
1

θ−1 −2
σ2.

And the third:

Et

[(
Zt(ω)

Zt

)θ−1
]

≈
(

1
µ

+
σ2

µ3

)
µ(ω) −

( 1
2µ2

)
σωΩ(ω).
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Back Derivation: Proposition 5 VI
Substituting the approximations in the covariance expression, and rearranging,

Covt

(
Yt+1, Et+1

[
∞∑

s=t+1

βs−(t+1)
(Πs(ω)

Ys
−

Fs(ω)
Ys

)])

≈
(Kα

t+1L1−α)
θ

((
θ − 2
θ − 1

)(
µ

1
θ−1

µ

)
σ2 +

(
µ

1
θ−1

µ

)(
σ

µ

)2
[(1

2

)(
θ − 2
θ − 1

)( 1
θ − 1

)(
σ

µ

)2
− 1
])

· µ(ω)

+
(Kα

t+1L1−α)
θ

[(1
2

)( 1
θ − 1

)( 1

µ
1

θ−1

){
1 −
(1

2

)(
θ − 2
θ − 1

)( 1
µ2

)}]
· σωΩ(ω)

≈ ζr1µ(ω) + ζr2σωΩ(ω),
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Back Derivation: Proposition 5 VII
where ζr1 and ζr2 are parameter collections given by:

ζr1 :=
(Kα

t+1L1−α)
θ

((
θ − 2
θ − 1

)(
µ

1
θ−1

µ

)
σ2 +

(
µ

1
θ−1

µ

)(
σ

µ

)2
[(1

2

)(
θ − 2
θ − 1

)( 1
θ − 1

)(
σ

µ

)2
− 1
])

ζr2 :=
(Kα

t+1L1−α)
θ

[(1
2

)( 1
θ − 1

)( 1

µ
1

θ−1

){
1 −
(1

2

)(
θ − 2
θ − 1

)( 1
µ2

)}]
,

and Kt+1 is evaluated at its steady-state value. Finally, returning to the expression for expected excess returns,

Et

[
rt+1(ω) − rf,t+1

]
≈ ζr1

µ(ω)
Vt(ω)

+ ζr2
σωΩ(ω)
Vt(ω)

.
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Appendix

Profit Comovement

Model derivations

Olley-Pakes Productivity

Compustat Dataset

İmrohoroğlu and Tuzel (2014)

References



Total factor productivity estimated using Olley and Pakes (1996)
Compustat Annual Fundamentals North America, 2015; pricolor dot are Starbucks and Boeing (left to right)
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Traditional productivity estimates are problematic
Slides follow Olley and Pakes (1996) and Arnold (2005)

Traditional productivity estimation: yi,t = βlli,t + βkki,t + ui,t,

Problems:
1. Simultaneity bias
2. Selection bias

Notation:
yi,t log of value added at firm i
li,t log of labor usage at firm i
ki,t log of capital usage at firm i
ui,t error term

Back to evidence
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Traditional productivity estimates are problematic:
simultaneity puts an upward bias on estimates I

Traditional productivity estimation: yi,t = βlli,t + βkki,t + ui,t,

Simultaneity: Explanatory and dependent variables influenced by ui,t

▶ Firm i probably knows its productivity when choosing inputs (serial corr)
▶ If productivity rises, both output and inputs rise in response
▶ Left uncorrected, model attributes too much output variation to inputs
▶ Thus, upward bias in capital and labor coefficient estimates

Back to evidence
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Traditional productivity estimates are problematic:
selection puts a downward bias on estimates I

Traditional productivity estimation: yi,t = βlli,t + βkki,t + ui,t,

Selection: Sample not representative of population
▶ Firm entry and exit are common, firm panel data usually unbalanced
▶ Balancing the panel introduces bias because of exit selection
▶ Firms w/ low capital stock tend to exit after bad productivity shock
▶ Firms w/ high capital stock tend to survive, so corr(shock, stock) < 0
▶ Thus, downward bias in capital coefficient estimates

Back to evidence

Mullen (2025) — Aggregate Fluctuations 58/72



Olley and Pakes (1996) estimate three equations that together take
explicit account of simultaneity and selection bias I

Olley-Pakes productivity estimation:

Pi,t = Pt(ii,t, ki,t) (43)
yi,t = βlli,t + ϕ(ii,t, ki,t) + ηt (44)

yi,t+1 − βlli,t+1 = βkki,t+1 + g(Pi,t, ϕi,t − βkki,t) + ξi,t+1 + ηi,t+1 (45)

where ϕ and g(·) estimated non-parametrically, used to control for biases
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Olley and Pakes (1996) procedure takes explicit account of
simultaneity and selection bias I

Outline of Procedure:

1. Split error term u into two components:

yi,t = βlli,t + βkki,t + ωi,t + ηi,t, (46)

where ω, η unobserved, but firm can forecast ω

2. Use behavioral model to derive relationships: ω(i, k), ω(k), P (i, k)
where i is investment, P survival probability, ω exit cut-off productivity

3. Use behavioral relations to transform (46) into semi-parametric form in (44)

4. Probit estimation of P in (43), approximating P non-parametrically
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Olley and Pakes (1996) procedure takes explicit account of
simultaneity and selection bias II

5. First stage: Estimation of βl, ϕ in (44), approximating ϕ non-parametrically

6. Second stage: Use estimates of βl, ϕ, P to estimate (45)

7. Fit (46), get unbiased productivity estimate from residual
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Olley and Pakes (1996): Details on controlling for simultaneity I

Behavioral model implies (unspecified) function for optimal investment:

ii,t = it(ωi, t, ki,t)
⇒ ωi,t = ht(ii,t, ki,t) iff i(·) invertible.

Notice that h(·) relates unobservable ω to observables k and i.

Define ϕt(ii,t, ki,t) := βkki,t + ht(ii,t, ki,t), approximate ϕt non-parametrically,
transform (46) and estimate

yi,t = βlli,t + ϕt(ii,t, ki,t) + ηi,t.
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Olley and Pakes (1996): Details on controlling for selection (1/2) I

Behavioral model implies (unspecified) exit rule: exit if χ = 0, where

χi,t =
{

1 if ωi,t ≥ ωi,t(kt),
0 otherwise.

Use probit to estimate probability of survival P , where:

Pr(χt = 1 | ωi,t+1(ki,t+1), Jt)
= Pr(ωi,t+1 ≥ ωi,t+1(ki,t) | ωi,t+1(ki,t+1), ωi,t)
= P(ωi,t+1(ki,t+1), ωi,t)
= P(ii,t, kt)
:= Pi,t

where Ji,t is information set, and where P approximated non-parametrically.
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Olley and Pakes (1996): Details on controlling for selection (2/2) I

Define g(ωi,t+1(ki,t+1), ωi,t) := E[ωi,t+1 | ωi,t, χi,t = 1].

Invert expression Pi,t = P(ωi,t+1(kt + 1), ωi,t) for survival probability to write g i.t.o.
Pi,t and ωi,t

Use definition of ϕ in g to transform (46) and estimate

yi,t+1 − βlli,t+1 = βkki,t+1 + g(Pi,t, ϕi,t − βkki,t) + ξi,t+1 + ηi,t+1.

Finally, use estimates of βl and βk to fit (46) and compute productivity as residual.
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Compustat data used in TFP estimation
I follow İmrohoroğlu and Tuzel (2014) in estimating TFP using Compustat data:

▶ Compustat fundamental annual data 1962–2015, available through WRDS

▶ Drop financial firms (SIC 6000–6999) and regulated firms (SIC 4900–4999)

▶ Deflators: GDP price index, private fixed investment price index, national wage index

▶ Compustat series: SALE, OIBDP, EMP, PPEGT, DPACT, DP

Calculation of variables:
▶ Value Added: Sales - Materials
▶ Materials: Total Expense - Labor Expense
▶ Total Expense: Sales - Operating Income Before Depreciation and Amortization
▶ Labor Expense: Number of Employees × National Average Wage
▶ Labor Stock: Number of Employees
▶ Capital Stock: Gross Property, Plant, and Equipment
▶ Capital Stock Age: Accumulated Depreciation / Current Depreciation, 3-yr average
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İmrohoroğlu and Tuzel (2014) study the relationship between firm
productivity and stock returns

1. Empirical part:

▶ Estimate TFP for Compustat firms 1963—2009

▶ Descriptive statistics for TFP-sorted portfolios

2. Theoretical part:

▶ Partial equilibrium model

▶ Productivity heterogeneity

▶ Convex adjustment costs
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İmrohoroğlu and Tuzel (2014): TFP estimation I

Authors follow a modified version of Olley and Pakes (1996):

yi,t = β0 + βkki,t + βlli,t + ωi,t + ηi,t + controls.

where
ωi,t forecastable by firm, unobserved by econometrician
ηi,t unforecastable, unobserved

Remarks:
▶ controls remove effects of industry or aggregate TFP
▶ firm TFP thus uncorrelated with aggregate TFP by construction
▶ consistent with authors’ choice of production function in theory part

Olley-Pakes details
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İmrohoroğlu and Tuzel (2014): Beta estimation I

Authors estimate basic CAPM equation:

rp,t − rf,t = αp + βp(rm,t − rf,t)

where
rp,t value-weighted return on TFP-sorted portfolio p
rf,t risk-free return
rm,t return on market portfolio

Remarks:
▶ market return is value-weighted return on NYSE, AMEX, NASDAQ stock
▶ risk-free rate is one-month treasury bill
▶ portfolios consist of Compustat firms sorted on TFP estimates
▶ Consumption CAPM more appropriate in my model
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İmrohoroğlu and Tuzel (2014): Theory I

Authors use firm-level production functions of the form:

Yi,t = AtZi,t(Ki,t)αK (Li,t)αL ,

where at = log(At), zi,t = log(Zi,t), and cov(at, zi,t) = cov(zi,t, zj,t) = 0.

Note well: cov(at + zi,t, at) = var(at) ∀i. In other words,
▶ firm and aggregate TFP covary equally across all firms
▶ differences in exposure to systematic risk not coming from TFP directly
▶ instead, convex capital adjustment costs drive risk exposure in model
▶ this distinguishes their approach (common in literature) from mine
▶ my empirical task: estimate cov b/w firm and aggregate TFP
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