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A Theoretical Appendix

This appendix provides additional discussion on several aspects of the paper. It provides
a basic mathematical discussion of the model presented in Section 3, proofs of the
propositions in Section 4, details of the productivity estimation procedure I use. The
discussion includes first-order conditions for the decision problems of the representative
household and of consumption goods producers, and derivations of the propositions
presented in section 4.

A.1 Optimality conditions

Optimality conditions for the representative household. The household solves its utility
maximization problem in two stages. The two-stage budgeting procedure is possible
here because the period utility function u(Cs) depends only on the basket Ct, and Ct is
homogeneous of degree one (Gorman, 1959). Consider the first-stage problem in (11).
Eliminate constraint (10) by substituting for It in (9). Use the method of Lagrangian
multipliers to rewrite the objective function as

L = E

 ∞∑
s=t

βs−tu(Cs) − βs−tλs

Cs + Ks+1 +
∫

ω∈Ω

Vs(ω)Ss+1(ω)λ(dω)

−wsL − (1 + rs − δ)Ks −
∫

ω∈Ω

[Vs(ω) − Πs(ω)]Ss(ω)λ(dω)


. (A1)

To get first-order optimality conditions, equate with zero the first derivatives of L with
respect to choice variables Cs, Ks+1, Ss+1(ω), and λs for arbitrary period s and firm ω.
The household’s optimal plans for consumption, capital accumulation, and equity shares,
respectively, satisfy the following conditions:

E
[
u′(Cs)

]
= E[λs], (A2)

E[λs] = βE
[
λs+1(1 + rs+1 − δ)

]
, (A3)

E
[
λsVs(ω)

]
= βE

[
λs+1(Vs+1(ω) + Πs+1(ω))

]
. (A4)

The household’s stochastic discount factor also derives from these conditions: set s = t

and use (A2) and (A4) to write firm ω’s period-t present value as

Vt(ω) = Et

(β
u′(Ct+1)
u′(Ct)

)(
Vt+1(ω) + Πt+1(ω)

). (A5)

The one-period stochastic discount factor is then the first term in the expectation operator:
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mt,t+1 = βu′(Ct+1)/u′(Ct) . Iterate (A5) via Vt+1(ω) to get the multi-period stochastic
discount factor. For any period s ≥ t, write the latter as

mt,s = mt,t+1 · mt+1,t+2 · · · ms−1,s

= β
u′(Ct+1)
u′(Ct)

· β
u′(Ct+2)
u′(Ct+1)

· · · β
u′(Cs)

u′(Cs−1)
= βs−t u′(Cs)

u′(Ct)
.

(A6)

Next, solve the household’s second-stage problem of allocating consumption across
varieties ct(v, ω) within the aggregate basket Ct. Let Pt(v, ω) be the nominal price of
variety ct(v, ω), and Pt be the nominal price of the consumption basket Ct. The household
takes the optimal amount of aggregate consumption Ct as given by the first-stage problem,
and takes nominal prices as given, and maximizes its consumption of varieties for each
unit of expenditure 1 := PtCt, by solving equation (12). Writing the Lagrangian,

L =

 ∫
Ω

∫
V(ω)

[
ct(v, ω)

] θ−1
θ λ(dvdω)


θ

θ−1

+ λt

1 −
∫
Ω

∫
V(ω)

Pt(v, ω)ct(v, ω)λ(dvdω)

.

Taking the first derivative of the Lagrangian with respect to consumption varieties
ct(v, ω), ct(v′, ω′), and setting equal to zero,

C−1
t ct(v, ω)− 1

θ = Pt(v, ω),

C−1
t ct(v′, ω′)− 1

θ = Pt(v′, ω′),

and the ratio of the two optimality conditions yields,

(
ct(v, ω)
ct(v′, ω′)

)− 1
θ

= Pt(v, ω)
Pt(v′, ω′) . (A7)

Using equation (A7) in the expenditure constraint in equation (12),

1 =
∫
Ω

∫
V(ω)

Pt(v, ω)ct(v, ω)λ(dvdω)

=
∫
Ω

∫
V(ω)

Pt(v, ω)
(

Pt(v′, ω′)
Pt(v, ω)

)θ

ct(v′, ω′)λ(dvdω)

= Pt(v′, ω′)θct(v′, ω′)
∫
Ω

∫
V(ω)

Pt(v, ω)1−θλ(dvdω).
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Again using equation (A7), notice that the aggregate consumption basket can be written

Ct =

 ∫
Ω

∫
V(ω)

[
ct(v, ω)

] θ−1
θ λ(dvdω)


θ

θ−1

=

 ∫
Ω

∫
V(ω)

( Pt(v, ω)
Pt(v′, ω′)

)−θ

ct(v′, ω′)


θ−1
θ

λ(dvdω)


θ

θ−1

= Pt(v′, ω′)θct(v′, ω′)

 ∫
Ω

∫
V(ω)

Pt(v, ω)1−θλ(dvdω)


θ

θ−1

.

Now recall 1 = PtCt, and define pt(v, ω) := Pt(v, ω)/Pt. The above expressions imply the
following price index and demand curve:

1 =

 ∫
Ω

∫
V(ω)

[
pt(v, ω)

]1−θ
λ(dvdω)


1

1−θ

, (A8)

ct(v, ω) =
[
pt(v, ω)

]−θ
Ct. (A9)

Optimality conditions for consumption goods producers. Consider firm ω’s profit
maximization problem (5). Eliminate constraints by using (3) and (A9) to substitute for
pt(v, ω) and yt(v, ω) in the firm-vintage profit function (4) that appears in (5). Obtain
first-order optimality conditions by equating with zero the first derivatives of Πt(ω) with
respect to choice variables kt(v, ω) and lt(v, ω) for arbitrary vintage v. Firm ω’s optimal
choice of capital for production with vintage v satisfies

kt(v, ω) = (α)
(

θ − 1
θ

)
(Yt)

1
θ [yt(v, ω)]

θ−1
θ (rt)−1. (A10)

Its optimal choice of labor satisfies

lt(v, ω) = (1 − α)
(

θ − 1
θ

)
(Yt)

1
θ [yt(v, ω)]

θ−1
θ (wt)−1. (A11)

Notice that the optimal capital-labor ratio depends neither on the individual firm nor on
the vintage of technology:

kt(v, ω)
lt(v, ω) =

(
α

1 − α

)(
wt

rt

)
. (A12)

3



Optimality conditions for capital goods producers. Now consider the profit maximization
problem for the capital goods producer. Take derivatives of gross profit with respect to
the factors to obtain first-order conditions:

rt = αZt(kt)α−1(lt)1−α, (A13)

wt = (1 − α)Zt(kt)α(lt)−α. (A14)

Notice that the the capital-labor ratio in the capital goods sector is again

kt

lt
=
(

α

1 − α

)(
wt

rt

)
. (A15)

A.2 Main propositions and proofs

1 Let zt(v) now be a random preference multiplier. Replace the stochastic production
function in equation (3) with equation (3′) below, and the non-stochastic preferences in
equation (12) with equation (12′) below:

yt(v, ω) = z(ω)
[
kt(v, ω)

]α[
lt(v, ω)

]1−α
, (3′)

Ct =

 ∫
Ω

∫
V(ω)

[
zt(v)ct(v, ω)

] θ−1
θ λ(dvdω)


θ

θ−1

. (12′)

Then the propositions of this section remain true after derivation of the appropriate
stochastic household demand curve for individual varieties.

Proof. The proof starts by re-deriving the demand-curve, following section A.1 but now
under the stochastic preferences in equation (12′). The household solves

max{
ct(v, ω)

}
v∈V,ω∈Ω

 ∫
Ω

∫
V(ω)

[
zt(v)ct(v, ω)

] θ−1
θ λ(dvdω)


θ

θ−1

s.t. 1 =
∫
Ω

∫
V(ω)

Pt(v, ω)ct(v, ω)λ(dvdω).

(A16)

The Lagrangian is

L =

 ∫
Ω

∫
V(ω)

[
zt(v)ct(v, ω)

] θ−1
θ λ(dvdω)


θ

θ−1

+ λt

1 −
∫
Ω

∫
V(ω)

Pt(v, ω)ct(v, ω)λ(dvdω)

.
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Taking the first derivative of the Lagrangian with respect to consumption varieties
ct(v, ω), ct(v′, ω′), and setting equal to zero,

C−1
t

[
zt(v)ct(v, ω)

]− 1
θ zt(v) = Pt(v, ω),

C−1
t

[
zt(v′)ct(v′, ω′)

]− 1
θ zt(v′) = Pt(v′, ω′),

and the ratio of the two optimality conditions yields,

(
zt(v)
zt(v′)

) θ−1
θ
(

ct(v, ω)
ct(v′, ω′)

)− 1
θ

= Pt(v, ω)
Pt(v′, ω′) . (A17)

The remaining steps of the derivation are straight-forward and follow the derivation in
section A.1 closely.

2 A productivity aggregate over technologies summarizes all of the technological
heterogeneity within an individual firm ω:

Zt(ω) =

 ∫
V(ω)

[
z(ω)zt(v)

]θ−1
λ(dv)


1

θ−1

. (A18)

A productivity aggregate over firms summarizes all of the firm-specific and technological
heterogeneity within the consumption goods sector:

Zt =

 ∫
Ω

Zt(ω)θ−1λ(dω)


1

θ−1

. (A19)

Aggregate factor demands, production, and profit can be written in terms of aggregate
productivities and variables that either do not vary across firms, in the case of firm
aggregates, or do not vary across firms or technologies, in the case of economy-wide
aggregates.

Proof. The household and capital goods producer are representative, so aggregation
pertains only to the final goods sector.

Start with the optimality conditions (A10) and (A11) from the firm’s decision problem
(5). These expressions contain vintage-specific variables kt(v, ω), lt(v, ω), and yt(v, ω) as
well as variables and parameters common to all vintages. Combine equations (A10) and
(A11) with the production function (3) to obtain expressions for kt(v, ω), lt(v, ω), and
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yt(v, ω) in terms of zt(v) and variables and parameters common to all vintages:

kt(v, ω) = [z(ω)zt(v)]θ−1(Yt)
(

θ − 1
θ

)θ(
rt

α

)α(1−θ)−1
(

wt

1 − α

)(1−α)(1−θ)

, (A20)

lt(v, ω) = [z(ω)zt(v)]θ−1(Yt)
(

θ − 1
θ

)θ(
rt

α

)α(1−θ)
(

wt

1 − α

)(1−α)(1−θ)−1

, (A21)

yt(v, ω) = [z(ω)zt(v)]θ(Yt)
(

θ − 1
θ

)θ(
rt

α

)−αθ
(

wt

1 − α

)−(1−α)θ

. (A22)

These expressions can be simplified further using an expression derived from the
definition of the consumption basket, along with (A22) and market clearing:

Yt =

 ∫
Ω

∫
V(ω)

[yt(v, ω)] θ−1
θ λ(dvdω)


θ

θ−1

=
(

θ − 1
θ

)θ(
α

rt

)αθ(1 − α

wt

)(1−α)θ

(Yt)

∫
Ω

∫
V(ω)

(z(ω)zt(v))θ−1λ(dvdω)


θ

θ−1

⇔ Zt :=

∫
Ω

∫
V(ω)

(z(ω)zt(v))θ−1λ(dvdω)


1

θ−1

=
(

θ

θ − 1

)(
rt

α

)α
(

wt

1 − α

)1−α

.

Now use the expression for Zt to simplify (A20)–(A22):

kt(v, ω) =
(

θ − 1
θ

)(
α

rt

)(
z(ω)zt(v)

Zt

)θ−1

Yt

lt(v, ω) =
(

θ − 1
θ

)(
1 − α

wt

)(
z(ω)zt(v)

Zt

)θ−1

Yt

yt(v, ω) =
(

z(ω)zt(v)
Zt

)θ

Yt.

Now recall that pt(v, ω) = (yt(v, ω)/Yt)−(1/θ), and use above to get a similar expression
for profit:

πt(v, ω) = pt(v, ω)yt(v, ω) − rtkt(v, ω) − wtlt(v, ω)

= 1
θ

(
z(ω)zt(v)

Zt

)θ−1

Yt.

To get firm aggregates, sum the kt(v, ω)’s, lt(v, ω)’s, and πt(v, ω)’s, and use the
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Dixit-Stiglitz aggregator on yt(v, ω):

Kt(ω) :=
∫

V(ω)

kt(v, ω)λ(dv) =
(

θ − 1
θ

)(
α

rt

)(
Zt(ω)

Zt

)θ−1

Yt

Lt(ω) :=
∫

V(ω)

lt(v, ω)λ(dv) =
(

θ − 1
θ

)(
1 − α

wt

)(
Zt(ω)

Zt

)θ−1

Yt

Yt(ω) :=

 ∫
V(ω)

(yt(v, ω))
θ−1

θ λ(dv)


θ

θ−1

=
(

Zt(ω)
Zt

)θ

Yt

Πt(ω) :=
∫

V(ω)

πt(v, ω)λ(dv) = 1
θ

(
Zt(ω)

Zt

)θ−1

Yt,

where

Zt(ω) :=

 ∫
V(ω)

(z(ω)zt(v))θ−1λ(dv)


1

θ−1

.

Further rearrangement along the same lines yields the economy-wide aggregates. It is
also possible to write aggregate output in terms of a Cobb-Douglas aggregate production
function, at both the firm and economy-wide levels:

Yt(ω) = Zt(ω)[Kt(ω)]α[Lt(ω)]1−α (A23)

Yt = Zt(Kt)α(Lt)1−α, (A24)

where the production function arguments should be understood as optimal factor inputs
that satisfy the firm’s optimality conditions for from the profit maximization problem (see
Felipe and Fisher, 2003, for a discussion).

Notice that the firm-level aggregate production function takes the familiar Cobb-
Douglas form. But remember that the distribution of shocks is endogenous, and the
underlying technology choice problem imposes additional structure on the firm-level
productivity multipliers. In particular, if technology sets V(ω) differs across firms, so
too will the distributions of the random productivity multipliers. And to the extent that
technology sets share common elements, firm-level productivity will covary. The next
three propositions make these statements rigorous.

3 In non-stochastic steady state, any firm ω with productivity z(ω) ≥ z chooses
technology set V(ω) =

{
v ∈ V : v ≤ v ≤ v(ω)

}
, where the endogenous cut-offs z and v(ω)
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are given by:

z =
(

θ

µε

) 1
θ−1

(A25)

v(ω) =
(

µε

θ

) 1
γ

z(ω)
θ−1

γ . (A26)

Firms with z(ω) < z do not produce. Under parameter restrictions, firms ω1 and ω2

with productivities z < z(ω1) < z(ω2) choose technology sets such that Vt(ω1) ⊂ Vt(ω2).
The above cut-offs are also first-order approximate to those that obtain in a stochastic
environment.

Proof. Firms choose their technology sets V(ω) ⊆ V = [v, ∞) ⊆ R+ to maximize profit.
Recall that technologies differ in their period fixed costs, but not their first two moments.
Starting from the technology adoption rule in (7), and rearranging:

0 < Et

[
mt,t+1(πt(v, ω) − fs(v))

]
= Et

[
β

u′(Ct+1)
u′(Ct)

(πt(v, ω) − fs(v))
]

= Et

[
1

Yt+1
(πt+1(v, ω) − ft+1(v))

]
,

where the third line assumes log utility. Now recall from the proof to 2:

πt(v, ω) = 1
θ

(
z(ω)zt(v)

Zt

)θ−1

Yt,

ft(v) = Yt

µ
vγ.

Using these expressions in the adoption rule:

Et

[
1

Yt+1
(πt+1(v, ω) − ft+1(v))

]
> 0

⇔

z(ω)θ−1

θ

Et

(zt(v)
Zt

)θ−1
 ≥ vγ

µ
.

From here, either evaluate the productivities in the ratio under the expectation operator
at their expected values to get an expression describing steady-state technology sets, or
take an approximation of the expression under the expectation operator. A first-order
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approximation gives the same results as the steady-state solution:

v(ω) =
(

µε

θ

) 1
γ

z(ω)
θ−1

γ

⇒ z(v) =
(

µε

θ

) 1
θ−1

v
γ

θ−1 .

Notice that the cut-off v(ω) increasing in z(ω), so the more productive firms produce
more varieties and use more technology.

Two remarks are in order: First, it is useful that the steady-state and first-order
approximate cut-offs coincide, because it means that first-order dynamics around the
steady state are completely standard in this model. Second, the second-order approximate
case gives more interesting but less tractable results. There is a covariance term in the
second-oder approximation that varies with v—covariance is higher for commonly-used
technologies.

4 Let technology sets be those that firms choose in non-stochastic steady state. Then
the first and second moments of firm-level productivity are given by µ(ω) and σ2(ω),
respectively:

µ(ω) = µεz(ω)ζµω1

(z(ω)
z

)ζµω2

− 1
, (A27)

σ2(ω) = σ2
ε z(ω)ζσω1

(z(ω)
z

)ζσω2

− 1
. (A28)

The first and second moments of aggregate productivity are given by µ and σ2,
respectively:

µ = µεζµ1z
ζµ2 , (A29)

σ2 = σ2
ε ζ

σ1z
ζσ2 . (A30)

Under parameter restrictions, the first and second moments of all productivity aggregates
are positive and finite. For firms ω1 and ω2 with z(ω1) < z(ω2), we have µt(ω1) < µt(ω2)
and σ2

t (ω1) < σ2
t (ω2).

Proof. Begin with the first moment of sector-aggregate productivity, just using the
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definition:

µ = E
[
Zθ−1

t

]
= E

∫
Ω

Zt(ω)θ−1λ(dω)



= E

∫
Ω

∫
V(ω)

(z(ω)zt(v))θ−1λ(dvdω)



= E

∫
V

∫
Ωv

(z(ω)zt(v))θ−1λ(dωdv)

 = E

∫
V

zt(v)θ−1

 ∫
Ωv

z(ω)θ−1λ(dω)

λ(dω)

,

where Ωv is the set of firms using vintage v, that is: Ωv :=
{
ω ∈ Ω : z(v) < z(ω)

}
, and

z(v) is the inverse of the cost cut-off v(ω).
Now evaluate the inner integral:

∫
Ωv

z(ω)θ−1λ(dω) =
∞∫

z(v)

z(ω)θ−1h(z(ω))dz(ω)

=
[

κ

(θ − 1) − κ
z(ω)(θ−1)−κ

]∞

z(v)

=
(

κ

κ − (θ − 1)

)
z(v)(θ−1)−κ

=
(

κ

κ − (θ − 1)

)(
µε

θ

)κ−(θ−1)
θ−1

(
1
v

) γ[κ−(θ−1)]
θ−1

.

Substitute the evaluated integral back into the expression for µ:

µ = E
[
Zθ−1

t

]
=
(

κ

κ − (θ − 1)

)(
µε

θ

)κ−(θ−1)
θ−1

E

∫
V

zt(v)θ−1v− γ[κ−(θ−1)]
θ−1 λ(dv)


=
(

κ

κ − (θ − 1)

)(
µε

θ

)κ−(θ−1)
θ−1

E

 ∞∫
v

zt(v)θ−1v− γ[κ−(θ−1)]
θ−1 λ(dv)



Use the definition of technological productivity zt(v) := εt,dve, set v = 1, and write the
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remaining integral as:

E

 ∞∫
v

zt(v)θ−1v− γ[κ−(θ−1)]
θ−1 λ(dv)

 = E

 ∞∫
v

εθ−1
t,dvev

− γ[κ−(θ−1)]
θ−1 λ(dv)


= E

 2∫
1

εθ−1
t,2 v− γ[κ−(θ−1)]

θ−1 λ(dv) +
3∫

2

εθ−1
t,3 v− γ[κ−(θ−1)]

θ−1 λ(dv) + . . .


= µε

2∫
1

v− γ[κ−(θ−1)]
θ−1 λ(dv) + µε

3∫
2

v− γ[κ−(θ−1)]
θ−1 λ(dv) + . . . .

Now consider the integrals of the form:

n+1∫
n

v− γ[κ−(θ−1)]
θ−1 λ(dv) =

( θ − 1
γ[κ − (θ − 1)] + (θ − 1)

)
v

−γ[κ−(θ−1)]+(θ−1)
θ−1

n+1

n

=
(

θ − 1
γ[κ − (θ − 1)] + (θ − 1)

)( 1
n

) γ[κ−(θ−1)]+(θ−1)
θ−1

−
(

1
n + 1

) γ[κ−(θ−1)]+(θ−1)
θ−1

.

Returning to the expression for µ:

µ = E
[
Zθ−1

t

]
=
(

κ

κ − (θ − 1)

)(
µε

θ

)κ−(θ−1)
θ−1

µε

∞∑
n=1

(
θ − 1

γ[κ − (θ − 1)] − (θ − 1)

)

×

( 1
n

) γ[κ−(θ−1)]+(θ−1)
θ−1

−
(

1
n + 1

) γ[κ−(θ−1)]+(θ−1)
θ−1


= µε

(
θ − 1

γ[κ − (θ − 1)] − (θ − 1)

)(
κ

κ − (θ − 1)

)(
µε

θ

)κ−(θ−1)
θ−1

.

Notice that
(

µε

θ

) 1
θ−1 appears on the right-hand side. Substituting it for z, and collecting

parameters,

µ = µεζµ1z
ζµ2 ,

where

ζ
µ1 :=

(
θ − 1

γ[κ − (θ − 1)] − (θ − 1)

)(
κ

κ − (θ − 1)

)
ζ

µ2 := κ − (θ − 1)

Now turn to the second moment of sector-aggregate productivity. Starting again with

11



the definition:

σ2 = Var
(
Zθ−1

t

)
= Var

∫
Ω

Zt(ω)θ−1λ(dω)

 = Var

∫
Ω

∫
V(ω)

(z(ω)zt(v))θ−1λ(dvdω)


= Var

∫
V

zt(v)θ−1
∫

Ωv

z(ω)θ−1λ(dωdv)



= Var

∫
V

zt(v)θ−1
∞∫

z(v)

z(ω)θ−1 κ

z(ω)κ+1 λ(dz(ω)dv)


= Var

∫
V

zt(v)θ−1 κ

(θ − 1) − κ
z(v)−[κ−(θ−1)]λ(dω)

,

where from the third to the fourth line I change measure from Lebesgue to Pareto.
Continuing, using z(v) =

(
θ

µε

) 1
θ−1 v

γ
θ−1 ,

σ2 = Var
(
Zθ−1

t

)
= Var

∫
V

(
κ

(θ − 1) − κ

)(
θ

µε

)− κ−(θ−1)
θ−1

zt(v)θ−1v
−γ[κ−(θ−1)]

θ−1 λ(dω)


=
(

κ

κ − (θ − 1)

)2(
θ

µε

)−2 κ−(θ−1)
θ−1

Var

∫
V

zt(v)θ−1v− γ[κ−(θ−1)]
θ−1

.

Now consider the integral:

∫
V

zt(v)θ−1v− γ[κ−(θ−1)]
θ−1 λ(dω) =

∫
V

εt,dvev
− γ[κ−(θ−1)]

θ−1 λ(dω) =
∞∫

v(ω)

εt,dvev
− γ[κ−(θ−1)]

θ−1 λ(dω)

= εt,2

2∫
1

v− γ[κ−(θ−1)]
θ−1 λ(dω) + εt,3

3∫
2

v− γ[κ−(θ−1)]
θ−1 λ(dω) + . . .

=
∞∑

n=1

εt,n+1(θ − 1)
γ[κ − (θ − 1)] − (θ − 1)

×

( 1
n

) γ[κ−(θ−1)]−(θ−1)
θ−1

−
(

1
n + 1

) γ[κ−(θ−1)]−(θ−1)
θ−1

.
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Returning to the expression for σ2:

σ2 = Var
(
Zθ−1

t

)
=
(

κ

κ − (θ − 1)

)2(
θ

µε

)−2 κ−(θ−1)
θ−1

× Var

 ∞∑
n=1

εt,n+1(θ − 1)
γ[κ − (θ − 1)] − (θ − 1)

( 1
n

) γ[κ−(θ−1)]−(θ−1)
θ−1

(
1

n + 1

) γ[κ−(θ−1)]−(θ−1)
θ−1




= σ2
ε

(
κ

κ − (θ − 1)

)2(
θ

µε

)−2 κ−(θ−1)
θ−1

(
(θ − 1)

γ[κ − (θ − 1)] − (θ − 1)

)2

×
∞∑

n=1

( 1
n

) γ[κ−(θ−1)]−(θ−1)
θ−1

−
(

1
n + 1

) γ[κ−(θ−1)]−(θ−1)
θ−1


2

.

Notice that
(

µε

θ

) 1
θ−1 appears on the right-hand side. Substituting it for z, and collecting

parameters,

σ2 = σ2
ε ζ

σ1z
ζσ2 ,

where

ζ
σ1 :=

(
κ

κ − (θ − 1)

)2( (θ − 1)
γ[κ − (θ − 1)] − (θ − 1)

)2 ∞∑
n=1

( 1
n

) γ[κ−(θ−1)]−(θ−1)
θ−1

−
(

1
n + 1

) γ[κ−(θ−1)]−(θ−1)
θ−1


2

ζ
σ2 := 2

[
κ − (θ − 1)

]
.

5 Let technology sets be those that firms choose in the non-stochastic steady
state. Then the covariance between firm and aggregate productivity, denoted by σωΩ(ω) =
Cov

(
Zt(ω)θ−1, Zθ−1

t

)
, is given by

σωΩ(ω) = z(ω)θ−1ζωΩ1

1 −
(

z

z(ω)

)ζωΩ2
 (A31)

The covariance between firm and aggregate productivity, expressed as a fraction of firm
market value, is approximated to a first order by

σωΩ(ω)
Vt(ω) ≈ 1

Yt


ζωΩ1

[
1 −

(
z

z(ω)

)ζωΩ2
]

ζV 1

(
z(ω)

z

)ζV 2

+ ζV 3

(
1

z(ω)

)ζV 4

−
(

1
z

)ζV 4

. (A32)

13



Under parameter restrictions, covariance-over-value falls for all z(ω) above a threshold.
The ratio also falls in the level of aggregate output.

Proof. To start, identify a specific firm ω1, use the definitions of Zt(ω1) and Zt in the
covariance expression, and the cut-offs z and v(ω) for the integral bounds:

σωΩ(ω) = Cov
(
Zt(ω1)θ−1, Zθ−1

t

)
= Cov

 ∫
Vt(ω1)

[z(ω1)zt(v)]θ−1λ(dv),
∫
Ω

Zt(ω)θ−1λ(dω)



= Cov


v(ω1)∫
v=1

[z(ω)zt(v)]θ−1λ(dv),
∞∫

z

v(ω)∫
v=1

[z(ω)zt(v)]θ−1λ(dvdω)

.

Now consider the first integral:

v(ω1)∫
v=1

[z(ω1)zt(v)]θ−1λ(dv) = z(ω1)θ−1
v(ω1)∫
v=1

εt,dveλ(dv)

= z(ω1)θ−1


2∫

1

εt,2λ(dv) +
3∫

2

εt,3λ(dv) + · · · +
v(ω)∫

v(ω)−1

εt,v(ω)λ(dv)


= z(ω1)θ−1

v(ω)−1∑
n=1

εt,n+1,

where I have assumed w.l.g. that v(ω) ∈ N.
Now consider the second integral:

∞∫
z

v(ω)∫
v=1

[z(ω)zt(v)]θ−1λ(dvdω) =
∞∫

v=1

zt(v)θ−1


∞∫

z(v)

z(ω)θ−1λ(dω)

λ(dv)

=
∞∫

v

zt(v)θ−1


∞∫

z(v)

z(ω)θ−1h(z(ω))λ(dz(ω))

λ(dv)

=
∞∫

v

zt(v)θ−1 κ

κ − (θ − 1)z(v)−[κ−(θ−1)]λ(dv),

where line two changes measure from Lebesgue to Pareto. Continuing with the second
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integral, using z(v) =
(

θµ
µε

) 1
θ−1 v

γ
θ−1 ,

∞∫
z

v(ω)∫
v=1

[z(ω)zt(v)]θ−1λ(dvdω) =
(

κ

κ − (θ − 1)

)(
θµ

µε

)−[κ−(θ−1])
θ−1

∞∫
v

zt(v)θ−1v
−γ[κ−(θ−1)]

θ−1 λ(dv).

Now the single integral on the right-hand side:

∞∫
v

zt(v)θ−1v
−γ[κ−(θ−1)]

θ−1 λ(dv) =
∞∫

v=1

εθ−1
t,dvev

−γ[κ−(θ−1)]
θ−1 λ(dv)

= εt,2

2∫
1

v
−γ[κ−(θ−1)]

θ−1 λ(dv) + εt,3

3∫
2

v
−γ[κ−(θ−1)]

θ−1 λ(dv) + . . .

.

Now consider the integrals of the form:

n+1∫
n

v
γ[κ−(θ−1)]

θ−1 λ(dv) =
( θ − 1

γ[κ − (θ − 1)] + (θ − 1)

)
v

γ[κ−(θ−1)]+(θ−1)
θ−1

n+1

n

=
(

θ − 1
γ[κ − (θ − 1)] + (θ − 1)

)( 1
n

) γ[κ−(θ−1)]+(θ−1)
θ−1

−
(

1
n + 1

) γ[κ−(θ−1)]+(θ−1)
θ−1

.

So the single integral becomes:

∞∫
v

zt(v)θ−1v
−γ[κ−(θ−1)]

θ−1 λ(dv) =
(

θ − 1
γ[κ − (θ − 1)] + (θ − 1)

)

×
∞∑

n=1
εt,n+1

( 1
n

) γ[κ−(θ−1)]+(θ−1)
θ−1

−
(

1
n + 1

) γ[κ−(θ−1)]+(θ−1)
θ−1

,

and the second integral becomes:

∞∫
z

v(ω)∫
v=1

[z(ω)zt(v)]θ−1λ(dvdω) =
(

κ

κ − (θ − 1)

)(
θµ

µε

)−[κ−(θ−1])
θ−1

(
θ − 1

γ[κ − (θ − 1)] + (θ − 1)

)

×
∞∑

n=1
εt,n+1

( 1
n

) γ[κ−(θ−1)]+(θ−1)
θ−1

−
(

1
n + 1

) γ[κ−(θ−1)]+(θ−1)
θ−1

.
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Now, recall that Cov
(
εt,n, εt,m

)
= 0 ∀ n 6= m, and write the desired covariance as:

σωΩ(ω) = Cov
(
Zt(ω1)θ−1, Zθ−1

t

)
= z(ω1)θ−1

(
κ

κ − (θ − 1)

)(
θµ

µε

)−[κ−(θ−1])
θ−1

(
θ − 1

γ[κ − (θ − 1)] + (θ − 1)

)

× Cov

v(ω)−1∑
n=1

εt,n+1,
∞∑

n=1
εt,n+1

( 1
n

) γ[κ−(θ−1)]+(θ−1)
θ−1

−
(

1
n + 1

) γ[κ−(θ−1)]+(θ−1)
θ−1




= z(ω1)θ−1
(

κ

κ − (θ − 1)

)(
θµ

µε

)−[κ−(θ−1])
θ−1

(
θ − 1

γ[κ − (θ − 1)] + (θ − 1)

)

×
v(ω)−1∑

n=1

( 1
n

) γ[κ−(θ−1)]+(θ−1)
θ−1

−
(

1
n + 1

) γ[κ−(θ−1)]+(θ−1)
θ−1

Cov
(
εt,n+1, εt,n+1

)

,

where Cov
(
εt,n+1, εt,n+1

)
= σ2

ε .
Notice that the right-hand side summation, with a as a temporary placeholder, is of

form:

v(ω1)−1∑
n=1

( 1
n

)a

−
(

1
n + 1

)a
 =

(1
1

)a

−
(

1
2

)a

+
(

1
2

)a

−
(

1
3

)a

+ · · · −
(

1
v(ω1)

)a


=
1 −

(
1

v(ω1)

)a
.

Returning to the covariance expression, and simplifying the summation as above,

σωΩ(ω) = Cov
(
Zt(ω1)θ−1, Zθ−1

t

)
= σ2

ε z(ω1)θ−1
(

κ

κ − (θ − 1)

)(
θµ

µε

)−[κ−(θ−1])
θ−1

(
θ − 1

γ[κ − (θ − 1)] + (θ − 1)

)

×

1 −
(

1
v(ω1)

) γ[κ−(θ−1)]+(θ−1)
θ−1



= σ2
ε z(ω1)θ−1

(
κ

κ − (θ − 1)

)(
θµ

µε

)−[κ−(θ−1])
θ−1

(
θ − 1

γ[κ − (θ − 1)] + (θ − 1)

)

×

1 −
(

θµ

µε

) γ[κ−(θ−1)]
γ(θ−1)

(
1

z(ω1)

) γ[κ−(θ−1)]
γ


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where the last line uses v(ω1) =
(

µε

θµ

) 1
γ z(ω1)

θ−1
γ .

Finally, collect parameters, return from specific ω1 to arbitrary ω, and write:

σωΩ(ω)
σ2

ε

= z(ω)θ−1ζωΩ1

1 −
(

z

z(ω)

)ζωΩ2
, where

ζωΩ1 =
(

κ

κ − (θ − 1)

)(
θµ

µε

)−[κ−(θ−1)]
θ−1

(
θ − 1

γ[κ − (θ − 1)] + (θ − 1)

)

ζωΩ1 = γ[κ − (θ − 1)]
γ

.

Recall that the µ appearing in ζωΩ1 has already been expressed in terms of parameters,
so the above expression suffices.

Now turn to covariance over market value. Start from the following primitives:

Vt(ω) = Et

 ∞∑
s=t+1

βs−t u′(Cs)
u′(Ct)

(
Πs(ω) − Fs(ω)

)

Πs(ω) =
∫

V(ω)

πs(v, ω)λ(dv) = 1
θ

(
Zs(ω)

Zs

)θ−1

Ys

Fs(ω) =
∫

V(ω)

Ys

µ
vγλ(dv).

Using u(Cs) = ln(Cs) and above primitives, rearrange to get:

Vt(ω)
Yt

= E


∞∑

s=t+1
βs−t


1
θ

(
z(ω)
Zs

)θ−1 ∫
V(ω)

zs(v)θ−1 − vγ

µ
λ(dv)


.

Split up the integral and evaluate the first term, assuming w.l.g. that v(ω) ∈ N:

∫
V(ω)

zs(v)θ−1λ(dv) =
v(ω)∫

v=1

εs,dveλ(dv)

=
2∫

1

εs,2λ(dv) +
3∫

2

εs,3λ(dv) + · · · +
v(ω)∫

v(ω)−1

εs,v(ω)λ(dv)

=
v(ω)−1∑

n=1
εs,n+1
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Now evaluate the second part of the integral that we split above:

∫
V(ω)

vγ

µ
λ(dv) = 1

µ

(
v(ω)γ+1

γ + 1 − 1
γ + 1

)
.

Substituting back into the expression for firm value,

Vt(ω)
Yt

=
∞∑

s=t+1
βs−t z(ω)θ−1

θ

v(ω)−1∑
n=1

E
[

εs,n+1

Zθ−1
s

]
−

∞∑
s=t+1

βs−t

(
v(ω)γ+1

1 + γ
− 1

1 + γ

)

To a first-order approximation, the expectation is: E
[

εs,n+1
Zθ−1

s

]
≈ µε

µ
. Simplifying,

Vt(ω)
Yt

≈ z(ω)
1+γ

γ
(θ−1)

(
µε

θµ

) 1+γ
γ
(

γ

1 + γ

)
− z(ω)θ−1

(
µε

θµ

)
+
(

1
1 + γ

)

Now combining with the covariance expression derived above:

σωΩ(ω)
Vt(ω) ≈ σ2

ε

Yt

·
z(ω)θ−1

(
θ−1

γ[κ−(θ−1)]−(θ−1)

)1 −
(

θµ
µε

) γ[κ−(θ−1)]−(θ−1)
γ(θ−1)

(
1

z(ω)

) γ[κ−(θ−1)]−(θ−1)
γ


z(ω)

1+γ
γ

(θ−1)
(

µε

θµ

) 1+γ
γ
(

γ
1+γ

)
− z(ω)θ−1

(
µε

θµ

)
+ 1

1+γ

.

Finally, using the expression for z, and collecting parameters to simplify,

σωΩ(ω)
Vt(ω) ≈ 1

Yt


ζωΩ1

[
1 −

(
z

z(ω)

)ζωΩ2
]

ζV 1

(
z(ω)

z

)ζV 2

+ ζV 3

(
1

z(ω)

)ζV 4

−
(

1
z

)ζV 4

, where

ζωΩ1 := zθ−1
(

σ2
ε (θ − 1)

γ[κ − (θ − 1)] − (θ − 1)

)
, ζωΩ2 :=

(
γ[κ − (θ − 1)] − (θ − 1)

γ

)

ζV 1 =
(

γ

1 + γ

)
, ζV 2 :=

(
θ − 1

γ

)
, ζV 3 :=

(
1

γ + 1

)
, ζV 4 := (θ − 1).

6 Let technology sets be those that firms choose in the non-stochastic steady state.
Then firm ω’s expected excess return is approximated to a second order by

Et

[
rt+1(ω) − rf,t+1

]
≈ ζr1

µ(ω)
Vt(ω) + ζr2

σωΩ(ω)
Vt(ω) , (A33)
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where I define firm ω’s return as rt(ω) =
[
Vt+1(ω) + Πt+1(ω) − Ft+1(ω)

]
/Vt(ω), and the

risk-free rate as rf,t = m−1
t,t+1. Under parameter restrictions, expected excess returns

decrease in firm productivity z(ω) for all z(ω) above a threshold.

Proof. Start with the definition of firm ω’s stock return:

rt+1(ω) = Vt+1(ω) + Πt+1(ω) − Ft+1(ω)
Vt(ω)

=
E
[∑∞

s=t+2 mt+1,s(Πs(ω) − Fs(ω))
]

+ Πt+1(ω) − Ft+1(ω)
Vt(ω)

=
Yt+1E

[∑∞
s=t+1 βs−(t+1)

(
Πs(ω)

Ys
− Fs(ω)

Ys

)]
Vt(ω) ,

where the third line assumes log utility and uses the definition of the household stochastic
discount factor. Now take the time-t conditional expectation:

Et

[
rt+1(ω)

]
= Et


Yt+1Et+1

[∑∞
s=t+1 βs−(t+1)

(
Πs(ω)

Ys
− Fs(ω)

Ys

)]
Vt(ω)



=
Et[Yt+1]Et

[
Et+1

[∑∞
s=t+1 βs−(t+1)

(
Πs(ω)

Ys
− Fs(ω)

Ys

)]]
Vt(ω)

+
Covt

(
Yt+1, Et+1

[∑∞
s=t+1 βs−(t+1)

(
Πs(ω)

Ys
− Fs(ω)

Ys

)])
Vt(ω)

= Et[Yt+1]
βYt

+
Covt

(
Yt+1, Et+1

[∑∞
s=t+1 βs−(t+1)

(
Πs(ω)

Ys
− Fs(ω)

Ys

)])
Vt(ω)

⇔ Et

[
rt+1(ω) − rf,t+1

]
=

Covt

(
Yt+1, Et+1

[∑∞
s=t+1 βs−(t+1)

(
Πs(ω)

Ys
− Fs(ω)

Ys

)])
Vt(ω) .

Consider the covariance term separately, recalling that zero serial correlation is assumed
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for εs,ns:

Covt

Yt+1, Et+1

 ∞∑
s=t+1

βs−(t+1)
(

Πs(ω)
Ys

− Fs(ω)
Ys

)
 = Covt

Yt+1,

(
Πt+1(ω)

Yt+1
− Ft+1(ω)

Yt+1

)
= Et

[
Πt+1(ω) − Ft+1(ω)

]
− Et[Yt+1]Et

[
Πt+1(ω)

Yt+1
− Ft+1(ω)

Yt+1

]

= Et

Yt+1

∫
V(ω)

1
θ

(
z(ω)zt+1(v)

Zt+1

)θ−1

λ(dv)

− Et[Yt+1]Et

 ∫
V(ω)

1
θ

(
z(ω)zt+1(v)

Zt+1

)θ−1

λ(dv)


= Et

1
θ

Yt+1

(
Zt+1(ω)

Zt+1

)θ−1
− Et[Yt+1]Et

1
θ

(
Zt+1(ω)

Zt+1

)θ−1
,

where the second line uses the assumption of zero serial correlation. Now recall from
(A23) that Yt+1 = Zt+1(Kt+1)α(L)1−α, that Kt+1 is determined in t, and that L fixed, so

Covt

Yt+1, Et+1

 ∞∑
s=t+1

βs−(t+1)
(

Πs(ω)
Ys

− Fs(ω)
Ys

)


= (Kα
t+1L

1−α)
θ

Et

Zt+1(ω)θ−1

Zθ−2
t+1

− Et[Zt+1]Et

(Zt+1(ω)
Zt+1

)θ−1



Next, second-order approximate the individual right-hand side expectations around
the non-stochastic steady state values µ(ω) and µ. Starting with the first right-hand side
expectation:

Et

Zt+1(ω)θ−1

Zθ−2
t+1

 ≈ µ(ω)
µ

θ−2
θ−1

+ 1
2

(
θ − 2
θ − 1

)(
θ − 2
θ − 1 + 1

)
µ(ω)

µ
θ−2
θ−1 +2

· σ2 − 1
2

(
θ − 2
θ − 1

)
1

µ
θ−2
θ−1 +1

· σωΩ(ω).

Now the second:

Et[Zt+1] ≈ µ
1

θ−1 + 1
2

(
1

θ − 1

)(
1

θ − 1 − 1
)

µ
1

θ−1 −2σ2.

And the third:

Et

(Zt(ω)
Zt

)θ−1
 ≈

(
1
µ

+ σ2

µ3

)
µ(ω) −

(
1

2µ2

)
σωΩ(ω).
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Substituting the approximations in the covariance expression, and rearranging,

Covt

Yt+1, Et+1

 ∞∑
s=t+1

βs−(t+1)
(

Πs(ω)
Ys

− Fs(ω)
Ys

)


≈
(Kα

t+1L
1−α)

θ

(θ − 2
θ − 1

)µ
1

θ−1

µ

σ2 +
µ

1
θ−1

µ

(σ

µ

)2
(1

2

)(
θ − 2
θ − 1

)(
1

θ − 1

)(
σ

µ

)2

− 1

 · µ(ω)

+ (Kα
t+1L

1−α)
θ

(1
2

)(
1

θ − 1

) 1
µ

1
θ−1

1 −
(

1
2

)(
θ − 2
θ − 1

)(
1
µ2

)
 · σωΩ(ω)

≈ ζr1µ(ω) + ζr2σωΩ(ω),

where ζr1 and ζr2 are parameter collections given by:

ζr1 := (Kα
t+1L

1−α)
θ

(θ − 2
θ − 1

)µ
1

θ−1

µ

σ2 +
µ

1
θ−1

µ

(σ

µ

)2
(1

2

)(
θ − 2
θ − 1

)(
1

θ − 1

)(
σ

µ

)2

− 1



ζr2 := (Kα
t+1L

1−α)
θ

(1
2

)(
1

θ − 1

) 1
µ

1
θ−1

1 −
(

1
2

)(
θ − 2
θ − 1

)(
1
µ2

)
,

and Kt+1 is evaluated at its steady-state value. Finally, returning to the expression for
expected excess returns,

Et

[
rt+1(ω) − rf,t+1

]
≈ ζr1

µ(ω)
Vt(ω) + ζr2

σωΩ(ω)
Vt(ω) .

A.3 Steady-state equilibrium

Equilibrium requires that the following market clearing conditions hold:

ct(v, ω) = yt(v, ω),

L =
∫
Ω

∫
V(ω)

lt(v, ω)λ(dvdω) + lt,

Kt =
∫
Ω

∫
V(ω)

kt(v, ω)λ(dvdω) + kt,

Ĩt = It +
∫
Ω

∫
V(ω)

fs(v)λ(dvdω),

St(ω) = 1.

In the steady state equilibrium, random productivities take their expected values
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(zt(v)θ−1 = µε, ∀v ∈ V), and capital and consumption are constant over time (Ct+1 =
Ct = C∗, Kt+1 = Kt = K∗). Under these conditions, solving for steady-state values of
endogenous variables is straight forward.

Begin by solving for the steady state wage and rental rate. In steady state, (A3)
becomes 1 = β(1 + r∗ − δ). Using (A13) to substitute for r∗:

1 = β(1 + r∗ − δ)

= β(1 − δ + αµ

(
l∗

k∗

)1−α

)

⇔ k∗

l∗ =
[

αβµ

1 − β(1 − δ)

] 1
1−α

.

Returning to (A13) and evaluating at steady state,

r∗ = αµ

(
k∗

l∗

)α−1

= µ

[
αβµ

1 − β(1 − δ)

]α−1
1−α

= 1 − β(1 − δ)
β

.

Now using (A14),

w∗ = (1 − α)µ
(

k∗

l∗

)α

= (1 − α)µ
[

αβµ

1 − β(1 − δ)

] α
1−α

.

Combining,
r∗

w∗ =
(

α

1 − α

)[
1 − β(1 − δ)

αβµ

] 1
1−α

.

Next, find an expression for the steady-state aggregate capital stock. Start with the
definitions of aggregate capital and labor:

K∗ =
∫
Ω

∫
V(ω)

k∗(v, ω)λ(dvdω) + k∗,

L =
∫
Ω

∫
V(ω)

l∗(v, ω)λ(dvdω) + l∗.
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Now use (A12) and (A15) to write

L =
(

1 − α

α

)(
w∗

r∗

)∫
Ω

∫
V(ω)

k∗(v, ω)λ(dvdω) + k∗


⇔ K∗ =

(
α

1 − α

)(
r∗

w∗

)
L

=
(

α

1 − α

)2[1 − β(1 − δ)
αβµ

] 1
1−α

L.

Recall that L is exogenous, so the above expression suffices. Next, use the law of
motion for capital to find a steady-state expression for investment demand It:

K∗ = I∗ + (1 − δ)K∗

⇔ I∗ = δK∗

= δ

(
α

1 − α

)2[1 − β(1 − δ)
αβµ

] 1
1−α

L.

B Empirical Appendix

I follow the procedures in Olley and Pakes (1996); İmrohoroğlu and Tuzel (2014), and
estimate a Cobb-Douglas production function in log form. The estimation equation is
given by:

ln(Yω,t) = α0 + αK ln(Kω,t) + αL ln(Lω,t) + ln(Zω,t), (B34)

where the residual Zω,t is firm-level total factor productivity. The procedure assumes
Zω,t = ξω,tηω,t, where Zω,t is unknown to the econometrician, but ξω,t is known to the firm.

Olley and Pakes (1996) use a simple behavioral model to derive reduced-form decision
rules for firms deciding each period whether to exit or continue producing, and if continuing,
how much new capital to purchase. Firms’ decision rules depend on their current knowledge
of productivity ξω,t. Each firm’s exit decision is captured by an indicator function χω,t:

χω,t =


1 if ξω,t > ξ

ω,t

0 otherwise,
(B35)

and their investment decision is captured by an investment function:

ln(Iω,t) = ln(Iω,t)
(

ln(ξω,t), ln(Kω,t)
)
. (B36)

Inverting the investment function, ln(ξω,t) = ln(ξω,t)
(

ln(Kω,t), ln(Iω,t)
)
. Defining a new

function, φ
(

ln(Kω,t), ln(Iω,t)
)

= α0 + αK ln(Kω,t) + ln(ξω,t)
(

ln(Kω,t), ln(Iω,t)
)
, the pro-

23



ductivity regression equation (B34) becomes

ln(Yω,t) = αL ln(Lω,t) + φ
(

ln(Kω,t), ln(Iω,t)
)

+ ln(ηω,t), (B37)

In a first stage regression, equation (B37) is estimated by least squares, where the
function φ

(
ln(Kω,t), ln(Iω,t)

)
controls for the forecastable component of firm productivity,

and is approximated by a polynomial in ln(Kω,t) and ln(Iω,t), denoting a firm’s capital
stock and investment. I include time-industry controls in this stage to prevent time-
industry effects from influencing the first-stage estimates. The remaining estimation
equations are given by:

Pi,t = Pt(ii,t, ki,t) (B38)

ln(Yω,t) − αL ln(Lω,t) = αL ln(Lω,t) + g(Pi,t, φi,t − βkki,t) + ln(ξω,t+1) + ln(ηω,t+1). (B39)

In the second stage, each firm’s probability of exit is estimated by equation (B38)
using probit, where Pt(ii,t, ki,t) is approximated by a polynomial in it and kt. Finally,
equation (B39) is estimated by non-linear least squares, using estimates from stages one
and two for Pi,t and φi,t, and approximating g(Pi,t, φi,t − βkki,t) non-parametrically. The
non-parametric functions φ, P, and g are derived in greater detail in Olley and Pakes
(1996).

I map model variables to Compustat variables in the following way, writing Compustat
variables in fixed-width font: labor expense is Lω,t = WAGE×EMP; capital is Kω,t = L.PPENT,
value added is Yω,t = OIBDP + WAGE × EMP.

İmrohoroğlu and Tuzel (2014) use an expanding estimation window to prevent infor-
mation that would have been unavailable to market participants in a particular period
from distorting results when they combine estimated productivity with financial market
data. I find that the expanding window approach leads to large differences in the volatility
of production function estimates in earlier periods relative to later periods. This increased
volatility biases the rolling-window covariance estimates in early years, so I instead use
the full sample period to estimate production function parameters, and then compute
productivity as the residual each period.
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