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1 Introduction

Technology is central to economics, driving everything from growth and business cycles

(Solow, 1960; Kydland and Prescott, 1982) to labor markets and financial markets (Autor,

Levy, and Murnane, 2003; Kogan, Papanikolaou, Seru, and Stoffman, 2017). Yet the

majority of firms—those that do not patent—remain technologically veiled, obscuring

how technology is used throughout much of the economy. Current technology datasets

lack the scale, scope, span, and specificity that economists need, and often focus on the

small minority of firms that own intellectual property rather than the broader universe

of firms that use technology. While many technology datasets exist, each has important

limitations.

In this paper, we construct a novel dataset linking firms to technologies using positive

and unlabeled machine learning. Our firm-level technology dataset offers an unprecedented

combination of scale, scope, span, and specificity. In scale, it covers all U.S. public firms

and a sample of 50,000 U.S. utility patents per year, amounting to hundreds of millions

of firm-patent pairs. In scope, it covers thousands of distinct technology categories

curated by patent examiners with subject-specific expertise, representing all major areas of

economically important innovation. In span, it covers nearly three decades of innovation,

including the rise of internet and mobile computing, advances in biotechnology and

medical technology, and the growth of renewable energy and electric vehicles. In specificity,

it characterizes the usefulness of each individual patent to each firm as a continuous

probability, allowing us to characterize each firm’s technological associations in granular

detail and by degrees. This contrasts with the available binary indicators—such as

patent ownership or innovation survey responses—which frequently cover few firms or few

technologies, lack specificity, or convey no variation in the strength of association.

Existing datasets typically rely on patent ownership or innovation surveys. Patent

ownership datasets have several limitations. First, few firms receive patent grants—fewer

than 1% of firms in the U.S. Census Bureau’s Business Register (Graham, Marco, and

Miller, 2015) and only 15.64% of CRSP firms in an average year. Second, patent-owning

firms are atypical—they are unusually large and concentrate in manufacturing (Mezzanotti
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and Simcoe, 2023). Third, patent ownership does not always signal technology use—firms

often file patents for reasons other than protecting actively used technology, including

patent blocking, use as bargaining chips in negotiations, and prevention of suits (Cohen,

Nelson, and Walsh, 2000; Moore, 2005). Fourth, patent ownership does not imply exclusive

access—intellectual property rights must be asserted through costly litigation (Lemley

and Shapiro, 2005). Fifth, patent owners regularly grant access to others—around 40% of

patents are embodied in commercial products (Argente et al., 2023) and around 4% are

reassigned annually (Graham, Marco, and Myers, 2018). These limitations make patent

ownership data unsuitable for many economic applications. Innovation surveys overcome

some limitations but lack the specificity of patent data. For example, survey respondents

may report that innovations occurred but rarely describe which specific innovations.

To overcome these limitations, we construct a new dataset that emphasizes technological

usefulness use over patent ownership. We start from a simple premise: if the language

that describes a patent is similar to the language that describes a firm, the patent is

probably useful for the firm—regardless of who owns it. Building on this premise, we

develop a novel methodology that combines natural language processing with techniques

borrowed from an area of machine learning called positive and unlabeled learning. Positive

and unlabeled learning is new to the economics literature, and allows us to view patent

ownership as a positive signal that a patent is useful to the firm that owns it, without

viewing the patent as useless to other firms. With positive and unlabeled learning, we

train a classifier on positive usefulness labels exclusively, and use the classifier to predict

the usefulness of patents to all firms, regardless of ownership.

We construct our dataset in two steps. First, we measure similarities in the language

used to describe patents and firms. The patent descriptions come from a corpus of patent

filings with the U.S. Patent and Trademark Office. The firm descriptions come from a

corpus of annual reports filed with the U.S. Securities and Exchange Commission. These

sources have each been extensively studied in the economics literature, but they have

not been combined with the aim of constructing a comprehensive firm-level technology

dataset covering non-patenting and patenting firms for use in economic research. We
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represent each description numerically using traditional term frequencies and inverse

document frequencies and using a modern natural language model built on the transformer

architecture. We then compute similarity scores between these numerical representations

for all firm-patent pairs. While the techniques we use in the first step of our methodology

are now commonplace in the economics literature, we take an important second step that

is novel.

In the second step, we use similarity scores to estimate probabilities that each firm

finds each patent useful. We refer to these estimates as usefulness probabilities. Traditional

supervised machine learning requires both positive and negative labels; in our setting,

these labels would indicate that a firm finds a patent useful or useless, respectively. But

these labels are not always available in our setting. When a patent is owned by a firm, we

assume the firm is likely to find the patent useful, and assign a (possibly noisy) positive

label to the pair. But for other firm patent pairs, we cannot immediately assign negative

labels, because patented innovations may be useful to firms who do not own them. Lacking

negative labels, we turn to positive and unlabeled machine learning techniques specifically

designed to overcome this challenge.

Positive and unlabeled learning, while novel in the economics literature, is well-

established in the machine learning literature. We adopt a classic two-stage procedure

from this literature, which was proposed by Liu et al. (2002). In the first stage, we assign

negative labels to a random selection of positive firm-patent pairs, and use these “spies”

to estimate a probability threshold for identifying firm-patent pairs where the patent

is reliably useless to the firm. We then train a second-stage classifier on positive and

reliably-negative firm-patent pairs. The spy procedure has an intuitive appeal and imposes

few assumptions on the labeling process.

Using this approach, we uncover surprising similarities between non-patenting and

patenting firm types. After conditioning on industry and firm size, we find that within-type

variation in technological associations substantially exceeds between-type variation. We

also find difference: non-patenting firms associate with broader but shallower technological

portfolios and exhibit higher rates of technological instability over time. The technological
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associations we uncover have economic consequences: technology momentum portfolios of

non-patenting firms generate monthly alphas of 1.97%, significantly exceeding strategies

restricted to patenting firms. The superior returns appear to be driven by slower infor-

mation diffusion about non-patenting firms’ technological profiles. Event study evidence

confirms that technological spillovers extend beyond patent ownership—firms experience

positive abnormal returns of approximately 0.9 basis points per useful patent over 30 days

following patent announcements, even for patents they do not own. Together, these results

demonstrate that technological associations matter for firm value, even for non-patenting

firms.

Related Literature. We contribute to three strands of literature. First, we build

on efforts to construct firm-level technology and innovation datasets. Early approaches

used direct profiling methods. The UN Industrial Development Organization’s Profiles of

Manufacturing Plants documented equipment use across manufacturing plants worldwide

in the late 1960s and early 1970s (United Nations, 1971), but these profiles lacked

standardization, covered few plants per industry, and the series was discontinued after

three editions. The U.S. Census Bureau’s Survey of Manufacturing Technology in the

late 1980s and early 1990s systematically surveyed over 10,000 U.S. manufacturing plants

about their use and planned adoption of seventeen advanced technologies (see Dunne,

1994, for a description). However, the survey focused on a narrow set of technologies and

was also discontinued after three editions.

Standardized innovation surveys emerged to provide broader, ongoing coverage of

firm innovation activities. The E.U. Community Innovation Survey (launched in 1992)

and U.S. National Science Foundation Business R&D and Innovation Survey (launched

in 2008) now measure firm-level innovation under a common framework. These surveys

represent a significant advance in scale and span over earlier profiling efforts. Yet their

indicators lack scope and specificity, relying on firms’ self-reported yes/no responses and

coarse categorizations (“product” versus “process”) that limit the utility of the data.

In parallel, a tradition developed around patent-based measures of firm technology. A
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major NBER initiative launched in the 1980s created the first large-scale patent ownership

dataset, with early contributions collected in Griliches (1987), a retrospective in Hall,

Jaffe, and Trajtenberg (2001), and an update in Arora, Belenzon, and Sheer (2021).

Patent datasets offer advantages in scale, scope, span, and specificity compared to survey

approaches. However, patent data exclude the majority of firms—those that do not

patent—creating significant coverage gaps. We contribute to this literature by providing

highly-detailed technological profiles of non-patenting firms using positive-unlabeled

machine learning. Unlike Bloom, Hassan, Kalyani, Lerner, and Tahoun (2021), who

study 29 disruptive technologies, we study a comprehensive set of legacy and disruptive

technologies.

Second, we contribute to a literature that uses the datasets described above to study

how technology and innovation relate to firm productivity and performance. The literature

is too large to survey here (Lerner and Seru, 2021, identify over 80 papers in top economics

journals between 2005 and 2020 using patent data), but seminal contributions include:

Griliches (1990), who surveys patents as economic indicators; Lerner (1994), who examines

patent scope and firm value; Hall, Jaffe, and Trajtenberg (2005), who show patent citations

better predict firm value than counts; Bloom, Schankerman, and Van Reenen (2013),

who identify productivity spillovers from patented innovations; Kogan et al. (2017), who

measure how innovation drives firm growth and aggregate productivity; and Akcigit and

Kerr (2018), who examine how different innovation types affect firm productivity. We

contribute by comparing, for the first time, the technological profiles of non-patenting

and patenting firms. We find that the technology use of non-patenting firms rivals that of

patenting firms, after conditioning on industry and firm size, with both groups exposed to

similar shocks and spillovers.

Third, we contribute to the growing literature on natural language processing and

machine learning methods in economics and finance. Gentzkow, Kelly, and Taddy (2019)

and Ash and Hansen (2023) survey recent work in economics, and Loughran and McDonald

(2020b) and Kelly and Xiu (2023) survey recent work in finance. Papers studying firms’

regulatory filings include Hoberg and Phillips (2016) on dynamic product-market industries,
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Hoberg and Phillips (2018) on industry momentum, Lopez-Lira (2019) on risk factors for

asset pricing, and Loughran and McDonald (2020a) and Cohen, Malloy, and Nguyen (2020)

on firm complexity. Papers studying patent descriptions include Myers and Lanahan (2022)

on R&D spillovers, Lerner et al. (2021) on patented financial technologies, Kogan et al.

(2021) on technology and labor productivity, and Kakhbod et al. (2024) on innovation

spillovers. To our knowledge, no prior work has linked regulatory filings with patent data

to produce a comprehensive firm-level technology dataset covering non-patenting and

patenting firms for use in economic research.

The paper is organized as follows. Section 2 describes our data sources. Section 3

describes our methodology for classifying patents as useful to firms. Section 4 compares the

technological profiles of non-patenting and patenting firms. Section 5 studies a technology

momentum investment strategy. Section 6 estimates the effect of new patent grants on

stock market performance. Section 7 concludes.

2 Data Sources

Our study combines traditional financial data with textual data on public firms and

patent grants in the United States. The financial data are CRSP daily and monthly

stock files and Fama-French return factors (Fama, 2023). The textual data are business

descriptions extracted from annual reports from the Electronic Data Gathering, Analysis,

and Retrieval database (EDGAR) of the U.S. Securities and Exchange Commission (SEC)

and patent descriptions from the PatentsView database of the U.S. Patent and Trademark

Office (USPTO).

Figure 1 plots annual counts of business and patent descriptions. These descriptions

offer broad coverage of technology users and technological innovations over an extended

period. The SEC data describes the products, operations, and intellectual property

of firms, while the USPTO data describes the novelty, function, and intended use of

technology. These complementary perspectives motivate our basic hypothesis: that a

patent is likely to be useful to a firm when the patent and firm are described in similar
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Figure 1: Annual Business and Patent Description Counts
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Notes. The figure shows annual counts of SEC business descriptions and USPTO patent descriptions. For
business descriptions, the solid line plots the total number of available annual reports, while the dashed
line plots the number of business descriptions we were able to extract. For patent descriptions, the solid
line plots the total number of patent grants, while the dashed line plots the number of utility patent
grants. We sample 50,000 utility patents randomly from each yearly total.

language—even if the firm does not own the patent.

We provide details about business descriptions from SEC filings in Section 2.1 below,

and about patent descriptions from the USPTO filings in Section 2.2. We describe the

Cooperative Patent Classification (CPC) system used to categorize patents in Section 2.3,

and we describe our approach to identifying patent owners in Section 2.4.

2.1 Business Descriptions

The Securities Exchange Act of 1934 mandates that certain firms register their securities

and file annual reports with the SEC (U.S. Congress, 1934). The mandate applies to

firms with securities registered under Section 12 of the Act, which includes firms listed

on a national securities exchange as well as unlisted firms that own assets exceeding $10

million in value and issue equity securities held by more than 2,000 persons or more than

500 persons who are not accredited investors.1

The SEC requires annual reports to be filed on Forms 10-K and 20-F. Form 10-K

filings must include non-financial information as outlined in Regulation S-K (U.S. SEC,

2013). Form 10-K is used by domestic U.S. issuers, while Form 20-F is used by foreign
1The act is amended from time to time, with updated thresholds and other changes. Exemptions or

modified requirements apply for certain types of securities and issuers, such as securities issued by banks,
savings and loan associations, and religious, educational, or charitable organizations.
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private issuers with shares listed on U.S. national securities exchanges and follows its

own form-specific disclosure requirements. Item 101 of Regulation S-K requires 10-K

filing firms to disclose their dominant business segments and markets served, competitive

conditions, principal products and services, material contracts and customer dependencies,

government contracts, material government regulation and compliance costs, distribution

methods, sources and availability of raw materials, research and development activities,

and patents, trademarks, and other intellectual property.2 Comparable disclosures are

required in Form 20-F.3 In prior research, Hoberg and Phillips (2016) have primarily

focused on product market information contained in business descriptions, but Regulation

S-K requires disclosures to contain operational and technological information that goes

beyond product markets.

We use the SEC’s annual index files to identify relevant filings; these files record an

identifier, the filing date, form type, and company name for each filing.4 We then scrape

the full text of relevant filings and extract business descriptions from these. Over the

period 1997 to 2023, we achieve an average annual extraction rate of 82%. We obtain

business descriptions for a total of 29,807 unique firms or an average of 8,048 unique firms

per year over the sample period.

2.2 Patent Descriptions

The Patent Act of 1952 governs patenting in the United States, authorizing the USPTO to

issue patents for inventions that are new, useful, and non-obvious (U.S. Congress, 1952).

Usefulness is broadly defined under U.S. patent law: the invention must provide a specific,

substantial, and credible utility, including a practical application in industry or research,

solving a real-world problem, or performing a useful function (USPTO, 2013). Patent
2For smaller reporting firms, the disclosure requirements are simplified. They must still report

their principal products, markets, and competitive conditions, government regulations, environmental
compliance, key suppliers, and material customer dependencies, though the level of detail required is
reduced (U.S. SEC, 2013, Item 101(h)).

3Form 10-K business descriptions appear in Item 1. Form 20-F business descriptions appear in Item 4,
which provides an extensive overview with information on the company’s operations, products, markets,
raw materials, important dependencies, competitive position, regulatory context, organization structure,
and property, plant, and equipment.

4The SEC maintains a complete list of all filings on its full-index web page (link).
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applications must include a description that establishes the usefulness of the innovation,

that is detailed enough to enable any person skilled in the relevant field to make and use

the invention. As such, patent descriptions must provide enough detail for reviewers—and

later, for researchers like ourselves—to infer whom the invention will benefit and the

context in which it will be applied.

We obtain digital records of patent filings made available on the USPTO’s PatentsView

platform, covering all filings from 1976 to present. The records include detailed patent

descriptions and metadata including patent title, assignee, application date and grant

date, and Cooperative Patent Classification (CPC) codes. We focus on utility patents

granted between 1997 and 2023, totaling 6,226,101 filings over the sample period. For our

main analysis, we randomly sample 50,000 patents per year, representing over 20% of the

yearly average of 230,596 utility patents in the PatentsView dataset.

2.3 Cooperative Patent Classification

The USPTO has a congressional mandate to maintain a classification system for patents,

to facilitate prior art searches and examination (U.S. Congress, 1836; U.S. Congress,

2011). The Cooperative Patent Classification (CPC) system currently serves this purpose;

it builds on the International Patent Classification (IPC) system, adopting identical rules

and principles but extending the number of classification codes to more than 260,000

(Simmons, 2014; EPO and USPTO, 2017; Lobo and Strumsky, 2019).5 Patents are

frequently reclassified, and PatentsView maintains both current and historical CPC

classifications. We use the current classification to ensure consistency over our sample

period, in line with previous studies (Strumsky, Lobo, and Van der Leeuw, 2012; Lobo

and Strumsky, 2019).

Following IPC principles, the CPC classifies patents according to either intrinsic

function or particular application (WIPO, 2024, paragraphs 81-87), and classifications
5The CPC emerged from a collaboration with the European Patent Office (EPO) and was formally

adopted by the USPTO in 2015, replacing a legacy system, the United States Patent Classification
(USPC), that had been in use since 1836 (Simmons, 2014). The CPC is revised multiple times per year
to keep pace with technological change, and Notices of Change are published regularly to the USPTO
website (link).
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Table 1: Descriptive Statistics for Levels of the CPC

CPC
Level

Number of
Categories

Average Annual Patents per Category
Median Min Max IQR Skewness Kurtosis

Section 8 5,360 356 14,017 5,630 0.48 −1.03
Class 121 99 1 6,576 282 4.43 21.35
Subclass 577 21 1 3,991 62 9.15 109.50
Group 3,887 3 1 1,075 7 11.03 195.72

Notes. The table describes four levels of the Cooperative Patent Classification (CPC) system: Section,
Class, Subclass, and Group. For each level, we report the number of categories, and the minimum, median,
and maximum number of patents per category, as well as the interquartile range (IQR), skewness, and
kurtosis, as averages of yearly statistics over the sample period, 1997 to 2023. The skewness and kurtosis
measures indicate distributional asymmetry and tail heaviness, respectively, particularly at finer levels of
classification.

often, but not always, cross industry boundaries. For example, patents for mixing and

agitation are grouped together, regardless of whether they are used for washing clothes,

mixing paint, or churning butter (Simmons, 2014). Similarly, valves characterized by

aspects of their construction are grouped together, independent of the fluid they control;

however, a valve specially for use in a heart, as a particular application, would be classified

separately (WIPO, 2024, paragraph 85).6

The CPC organizes patents into a hierarchy with four main levels: Sections, Classes,

Subclasses, and Groups, progressing from broad to narrow categories. Table 1 characterizes

these levels. Our sample of 50,000 patents per year includes patents from 8 Sections, 121

Classes, 577 Subclasses, and 3,887 Groups.7 Lower levels of the CPC are highly skewed

with a few large and many smaller categories. For example, the skewness coefficient

rises from 0.48 for Sections to 11.03 for Groups, and the ratio of maximum to median

annual patent count rises from 2.62 for Sections to 324.86 for Groups. Similar skew also

arises in other patent classification systems and may result from stochastic growth and
6The example from Simmons (2014) refers to the legacy USPC system, but carries over to the CPC,

where patents for mixing and agitation are classified under Subclass B10F (link). Likewise, the example
of values from the WIPO’s IPC manual carries over to the CPC, where, for instance, valves with pivoted
discs or flaps are classified under F16K 1/18 (link) and heart valves are classified under A61F 2/24 (link).

7The CPC system distinguishes between Main Groups (denoted by classification codes ending in /00)
and Subgroups (with additional digits after the slash). Throughout this paper, “Group” refers exclusively
to Main Groups, which number 3,887 in our sample. While the complete CPC system contains over
260,000 categories when including all Subgroups, we focus on Main Groups as they provide sufficient
granularity for our analysis.
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category-splitting dynamics of the system over time (Lafond and Kim, 2019).

2.4 Patent Ownership

We identify patent owners by matching disambiguated assignee names from USPTO patent

grants with company names from SEC annual reports using natural language processing.

Our approach essentially follows the methodology pioneered by Bound, Cummins, Griliches,

Hall, Jaffe, et al. (1982), while adopting recent refinements introduced by Kogan et al.

(2017) and Arora, Belenzon, and Sheer (2021). While we adopt a similar name-matching

approach to establish initial patent-to-owner links, our work departs from this literature

by treating these links as a first step that is followed by a machine learning classification

step, rather than an end goal.

We pre-process patent assignee names and company names by standardizing cases,

removing non-standard characters and punctuation, and stripping any suffixes that do not

aid in matching. We then use exact and fuzzy matching techniques to identify potential

matches between the pre-processed names, considering common substrings and other

similarity metrics. Initial matches are supplemented with a set of manually curated

matches for the most active patenting firms, and the results are iteratively refined to

ensure reliability. Only high-confidence matches are retained, with ambiguous cases flagged

for manual review.

We identify 712.48 unique patenting firms in an average year and 19,237 in total

over the period 1997 to 2023, matching 9,653.00 out of 50,000 sampled patents in an

average year and 260,631 patents in total. Only 15.64% of CRSP firms receive patent

grants in an average year, and while these patenting firms are often large, they account

for just 46.29% of CRSP market capitalization—less than half.8 Even among patenting

firms, concentration is high: while the average firm receives 13.55 patents annually, the

yearly maximum reaches 1,078.37 patents. Figure 2 shows that the low share of patenting

firms has remained remarkably stable from 1997 to 2023. These patterns highlight the
8The numbers rise to 25.07% of CRSP firms and 54.08% of CRSP market capitalization when firms with

patents granted in five-year rolling windows are included. For comparison, Lee et al. (2019) use firm-patent
matches from Kogan et al. (2017) and report an annual average of 956 patent owners accounting for
52.56% of CRSP market capitalization over the period 1963 to 2012, similar to what we find.
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Figure 2: Prevalence of Patent Owners in CRSP

1997 2010 2023
0

50%

100%
Percentage of CRSP Firms
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Notes. The figures show the number and market capitalization of patent-owning firms relative to the
number and market capitalization of SEC filing firms in CRSP monthly data from 1997 to 2023. The left
figure shows the number of patent owners divided by the number of CRSP SEC filing firms each year,
while the right figure shows the total market capitalization of patent owners divided by the total market
capitalization of CRSP SEC filing firms each year. Solid lines plot values for patent owners defined as
firms with at least one patent granted in a given year, while dashed lines plot values for patent owners
defined as firms with at least one patent granted in a backward-looking five-year rolling window.

importance of expanding technology research beyond patent ownership to include the

majority of firms that use technology but do not own patents.

Table 2 compares non-patenting to patenting firms by industry group and size class.

Industry groups are defined by SIC codes: Resource (0100–1799 and 4900–4999), Man-

ufacturing (2000–3999), Service (4000–4899, 5000–5999, and 7000–8999), and Finance

(6000–6399 and 6411). The table excludes real estate, holding companies, public adminis-

tration, and firms with missing SIC codes. Size classes are based on market capitalization

across all industries within each year: Large Cap (top 10%), Mid Cap (next 20%), Small

Cap (bottom 70%), and Private (firms with SEC filings but no CRSP data). The table

reports firm counts, market capitalization, and industry shares for each category.

Patenting activity varies substantially across industries. Patenting firms account for

74.50% of manufacturing market capitalization, 45.35% of services, and only 18.53% of

finance. Over one in three manufacturing firms patent, compared to one in ten service

firms and fewer than one in fifty finance firms. Large firms dominate patenting across

all industries, accounting for 48.90% of total market capitalization while representing

only 2.42% of all firms. These patterns show that focusing only on patenting firms

excludes most firms, particularly in service-oriented industries. As we show later, however,

non-patenting and patenting firms have surprisingly similar technological profiles within

industry and size groups.
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Table 2: Comparison of Non-Patenting and Patenting Firms by Industry and Size

Industry
Group

Size
Class

Firm Count Firm Size Industry Share
NP P NP P NP P

Finance Large 61.67 8.74 29.20 54.42 61.80 18.12
Mid 125.26 2.42 3.05 3.57 13.74 0.38
Small 523.96 3.40 0.32 0.57 5.93 0.08
Private 414.22 2.44 — — — —

All 1,125.11 16.48 3.03 35.19 81.47 18.53

Service Large 87.41 40.37 24.35 59.62 37.38 41.96
Mid 237.52 43.93 3.07 3.28 12.35 2.64
Small 799.89 98.37 0.37 0.42 4.92 0.75
Private 828.33 38.70 — — — —

All 1,953.15 221.37 2.92 16.47 54.65 45.35

Manufacture Large 49.48 121.52 29.79 46.06 17.67 66.22
Mid 155.44 169.41 3.05 3.21 5.36 6.09
Small 736.52 471.56 0.29 0.38 2.47 2.19
Private 653.26 126.11 — — — —

All 1,594.70 888.59 2.30 8.06 25.50 74.50

Resource Large 31.33 7.19 15.19 24.60 50.28 18.33
Mid 68.52 7.62 3.13 2.99 22.37 2.39
Small 162.78 13.74 0.36 0.39 6.13 0.59
Private 415.93 10.41 — — — —

All 678.56 38.67 2.72 6.60 78.78 21.22

All Large 229.89 177.81 25.51 49.54 32.38 48.90
Mid 586.74 222.81 3.08 3.23 9.65 3.88
Small 2,223.15 586.81 0.33 0.38 3.89 1.30
Private 3,121.19 193.07 — — — —

All 6,160.96 1,180.52 2.71 10.10 45.92 54.08

Notes. The table compares non-patenting firms (NP) and patenting firms (P) by industry group and size
class. Firm count is the number of firms of each type. Firm size is the average market capitalization
(in millions) for firms of each type. Industry share is the total market capitalization for firms of each
type expressed as a percentage of the total market capitalization of each industry group. These statistics
are computed by industry group and size class. Industry groups are defined by SIC four-digit codes:
Resource includes SIC 0100–1799 and 4900–4999; Manufacture includes SIC 2000–3999; Service includes
SIC 4000–4899, 5000–5999, and 7000–8999; and Finance includes SIC 6000–6399 and 6411. We exclude
firms with SIC codes 6400–6410, 6412–6499, 6500–6599, 6700–6799, 9000–9999, and firms with missing
SIC codes from the table. Size classes are determined by market capitalization across all industries within
each year: Large Cap (top 10%), Mid Cap (next 20%), Small Cap (bottom 70%), and Private (firms with
SEC filings that do not appear in CRSP). We define patenting firms as firms with patents granted in
five-year rolling windows.
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3 Estimating Usefulness Probabilities

Using textual similarity scores between business and patent descriptions, we train a binary

classifier to estimate the probability that a given patent would, in principle, be useful

to a given firm—even if the firm does not own the patent. We refer to the estimates as

usefulness probabilities. For training, we use a two-stage positive and unlabeled machine

learning technique. Despite the growing importance of machine learning in economics

and finance, we believe our paper is the first in these fields to use positive and unlabeled

learning.

We interpret patent ownership as a (possibly noisy) signal of usefulness. Under this

assumption, we assign positive usefulness labels to firm-patent pairs where the firm owns

the patent. All remaining firm-patent pairs, which constitute the vast majority of pairs,

are left unlabeled. We then identify “reliably negative” pairs from the unlabeled set

and assign them negative labels in the first stage. In the second stage, we use logistic

regression to train a binary classifier on the positive and reliably negative labeled data.

We evaluate our model on a test set of firm-patent pairs that were not used in training,

using a performance metric appropriate for positive and unlabeled learning. This approach

allows us to bring formal statistical tools to the patent usefulness classification problem,

revealing for the first time the technological profiles of non-patenting firms.

3.1 Measuring Document Similarity

The core features used by our classifier to predict usefulness are textual similarity scores

between business descriptions and patent descriptions. To obtain these features, we

vectorize the text of descriptions using three methods: term frequency (TF), term

frequency-inverse document frequency (TF-IDF), and Sentence-BERT (SBERT). TF

and TF-IDF are traditional methods that focus on word frequencies within and across

documents. In contrast, SBERT is a modern pre-trained transformer model that produces

embeddings (numerical vectors) capturing the contextual and semantic meanings of text.

For each of the three document vectorization methods, we compute the cosine similarity
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between all possible pairs of business descriptions and patent descriptions. We use the

resulting similarity scores as the core features in our positive and unlabeled learning classi-

fier. We estimate the classifier separately for each year, considering only contemporaneous

pairs of business and patent descriptions. We discuss document vectorization in more

detail in Appendix A.1, and cosine similarity scoring in Appendix A.2. In addition to the

similarity scores, we include indicators for SIC Divisions and CPC Sections, as well as

textual characteristics as control features in some specifications of our classifier.

Including document-level textual characteristics as control features is important because

cosine similarity can be sensitive to superficial textual properties such as document length,

writing style, or the presence of non-technological language (Brown and Tucker, 2011).

Without accounting for these factors during the classification step, we risk conflating true

technological relevance with stylistic or structural artifacts of the documents.

The three textual characteristics we examine are word count (the number of words

after removing standard English stop words), corpus overlap (the number of unique words

from one corpus that appear more than once in the other corpus), and lexical diversity

(measured using the MTLD metric of McCarthy and Jarvis 2010). Figure 3 shows the

cross-sectional distributions of these characteristics over time. Unlike traditional firm-level

characteristics like market capitalization and industry assignment, which differ markedly

between non-patenting and patenting firms as Table 2 shows, these textual characteristics

show more moderate differences.

Panel 3a shows textual characteristics of business descriptions for non-patenting firms

(left) and patenting firms (right). Averaging across years, we find cross-sectional median

word counts of 5,700.7 for non-patenting firms and 7,895.2 for patenting firms—a difference

of 38.5%. Corpus overlap medians are 1,309.1 versus 1,632.3—a difference of 24.7%. Lexical

diversity medians are 77.0 versus 85.9—a difference of 11.6%. The plots show broadly

similar interquartile ranges and 90-10 percentile ranges for the cross-sectional distributions

of all three metrics for both firm types, and interquartile ranges within firm type are

nearly twice the difference in medians across firm types for all three metrics. In other

words, differences within type are much larger than differences across types.
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Figure 3: Business and Patent Description Characteristics
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Notes. The plots in Panels 3a and 3b show the cross-sectional distribution of characteristics for business
and patent descriptions, respectively, from 1997 to 2023. Black lines shows the median and shaded regions
show the 25-75, 90-10, and 92.5-97.5 quantile ranges of values across descriptions each year. In Panel
3a, the left column shows the characteristics of business descriptions for non-patenting firms, while the
right column shows the same characteristics for patenting firms. In Panel 3b, the left column shows the
characteristics of patent descriptions for patents with no identified firm owner (these patents may be
owned by universities, government, or firms that do not file annual reports with the SEC, including some
foreign firms), while the right column shows the same characteristics for patents with identified owners.
The plotted characteristics are word count, corpus overlap, and lexical diversity. We define word count as
the number of words (including repeated occurrences) in a given description after removing standard
English stop words, corpus overlap as the number of unique words in a given description from one corpus
that appear more than once anywhere in the second corpus, and lexical diversity as the MTLD metric of
McCarthy and Jarvis (2010).
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Panel 3b shows textual characteristics of patent descriptions for patents without

identified owners (left) and with identified owners (right) in our sample of firms.9 Averaging

across years, we find median word counts of 2,146.4 for patents with identified owners

and 2,672.4 for those without—a 24.5% difference. Corpus overlap medians are 424.1

versus 539.1—a 27.1%. Lexical diversity medians are 35.3 versus 35.1—a −0.6% difference.

Additionally, as with business descriptions, the cross-sectional distributions are broadly

similar for patents with and without identified owners. Furthermore, interquartile ranges

within patent type are nearly twice the difference in medians across patent types for all

three metrics, indicating again that differences within type are much larger than differences

across types.

Business descriptions are substantially longer, contain greater corpus overlap, and

exhibit higher lexical diversity than patent descriptions. Both document types show

gradual increases in median word count and corpus overlap over time. From 1997 to 2023,

business description word counts grew 386.4% for non-patenting firms and 337.4% for

patenting firms, while patent word counts grew 155.6% and 156.2% for patents without and

with identified owners, respectively. Lexical diversity trends diverged: business descriptions

grew by 19.8% (non-patenting) and 18.0% (patenting), while patent descriptions shrunk

by -27.1% (no identified owner) and -26.9% (identified owner), respectively.

Importantly, these patterns hold consistently across both non-patenting and patenting

firm types, indicating that textual characteristics are not driven primarily by firm type.

This similarity matters for our empirical approach: our training data consists of patenting

firms paired with patents that have identified owners—though we emphasize that most

pairs are patenting firms that do not own the specific paired patent. If non-patenting firms

or patents without identified owners had substantially different textual characteristics

than the pairs we use for training, our classifier might perform poorly when applied to

the broader universe. The evidence in Figure 3 suggests this is not a major concern—the

textual features we use for classification are comparable across all firm and patent types,
9Patents without identified owners in our sample of firms may be owned by private individuals,

governments, or firms that do not file annual reports with the SEC, which would include some small U.S.
firms and foreign firms.
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both in terms of cross-sectional distributions and time trends.

3.2 Positive and Unlabeled Learning

The machine learning literature has developed several approaches to positive and unlabeled

learning, each suited to different assumptions about how positive instances are labeled.

Bekker and Davis (2020) review these approaches and summarize the assumptions that

underlie them. When all positive instances from a population are equally likely to be

labeled positive, irrespective of the characteristics of each instance, the positive instances

are said to be selected completely at random (SCAR). If the probability of a positive

instance being labeled depends on observable characteristics, the instances are said to be

selected at random (SAR). If the labeling mechanism depends on the probability of the

instance truly being positive, even controlling for observable characteristics, the instances

are said to be selected not at random (SNAR).

Many approaches to positive-unlabeled learning rely on the SCAR assumption, but our

setting does not satisfy this assumption. Our positive labels arise from patent grants, and

differences between patenting and non-patenting firms are well established. While these

differences are less pronounced in our text-based features, they persist—suggesting SAR

rather than SCAR conditions. Moreover, the labeling mechanism itself likely depends on

the true positive status: firms that receive patent grants are more likely to find those

patents genuinely useful, a characteristic of SNAR settings. Given these challenges, the

SCAR assumption cannot be justified in our setting.

Instead, we employ a methodology that requires minimal assumptions about the

labeling mechanism. Our approach belongs to a class of two-step methodologies that

rely on assumptions of separability and smoothness (Bekker and Davis, 2020). Under

separability, the classes are assumed to be separable such that a classifier exists that can

map positive and negative instances to opposite sides of a decision threshold. Under the

smoothness assumption, instances with similar features have similar label probabilities.

Under these assumptions, a first-stage classifier can identify reliable negative instances

based on their distance from labeled positive instances in feature space. A second-stage
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Figure 4: Possible and Unlabeled Learning Classification Scatter Plot
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Notes. The scatter plot shows a class-balanced random sample of 250 positive and 250 unlabeled firm-
patent pairs, highlighting the separation between these groups. Firm-patent pairs where the firm owns
the patent and our model predicts usefulness are marked as transparent black circles with solid black
centers, while those predicted useless are marked as transparent black circles only. Pairs where the
firm does not own the patent and our model predicts usefulness are marked as transparent red circles
with solid red centers, while those predicted useless are marked as transparent red circles only. The
horizontal axis represents SBERT cosine similarity scores, and the vertical axis represents TF-IDF cosine
similarity scores. Kernel density plots above and to the right show the class-conditional distributions of
each feature for the random sample. While the scatter plot demonstrates the predictive results of the
simple two-feature Model 2a in Table 3 to illustrate class separation in two dimensions, our preferred
Model 3c in Table 3, which incorporates additional features, achieves substantially better performance.

classifier can then be trained on the labeled positives and the reliable negatives that were

identified in the first stage.

Figure 4 illustrates the class separation achievable using just two document similarity

measures. The scatter plot shows that labeled positive and unlabeled firm-patent pairs

exhibit substantial, though not perfect, separation in the feature space defined by SBERT

and TF-IDF cosine similarities. The marginal distributions overlap but show distinct
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modes for each class–and importantly, since the unlabeled class contains both positive

and negative instances, the true separation between positive and negative classes would

be even greater than what we observe here. This separation suffices for a two-stage

methodology, as Bekker and Davis (2020) note that perfect separation is not required.

Rather, there should exist regions where positive density significantly exceeds negative

density, enabling the first stage to identify reliable negative examples with high confidence.

The clear separation in the marginal distributions, particularly for SBERT, suggests our

feature space meets this requirement. Additionally, the clustering of positive examples in

the scatter plot, rather than random dispersion among unlabeled examples, supports the

smoothness assumption that nearby points share similar class labels. While these two

similarity measures alone achieve reasonable separation, our preferred model incorporates

additional features and controls for improved performance.

Given this evidence for separability and smoothness, we implement a version of the

two-stage spy methodology developed by Liu et al. (2002). In the first of the two stages,

we create spies by removing the labels from a subset of positively labeled firm-patent

pairs. We assign negative labels to the spies and to all unlabeled observations and

train a first-stage classifier on this manipulated data. The first-stage classifier predicts

probabilities that we use to identify reliable negatives. Specifically, we mark observations

with first-stage probabilities below those of the spies as reliably negative.10 This first

stage filters out unlabeled firm-patent pairs that are likely positive. In the second stage,

we train a classifier on the positive and reliably negative pairs.

3.3 Model Training

Our positive and unlabeled data is inherently class imbalanced: there are far fewer firm-

patent pairs with positive labels than without labels. The imbalance arises because each

patent has only one owner, and we rely on ownership for our positive labeling. This class

imbalance can significantly affect our classifier’s performance, producing a bias towards
10The original spy methodology of Liu et al. (2002) uses the minimum positive label probability of the

spies to establish the threshold. In our application, for robustness against possible noise in our positive
labels, we take the tenth percentile rather than the minimum probability from the set of spies.
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predicting the majority class, which in our case are the reliably-negative firm-patent

pairs. Because far fewer than one percent of our firm-patent pairs have positive labels, a

classifier that never predicts positive labels would achieve near-perfect accuracy. But such

a classifier would be worthless.

The machine learning literature has developed a range of sampling and ensemble

methods for dealing with class imbalance (Galar et al., 2011). One such method, bootstrap

resampling, is particularly well-suited to positive and unlabeled learning, especially in

large datasets with few labeled observations (Mordelet and Vert, 2014). The method

of bootstrap aggregation (“bagging”), as adapted to the positive-unlabeled setting by

Mordelet and Vert, entails repeatedly under-sampling the unlabeled observations to

produce a number of re-balanced training samples for an ensemble of classifiers. A simple

average of the classifiers in the ensemble can then be used for prediction.

We adopt Mordelet and Vert’s bootstrap aggregation procedure, using logistic regression

as our core classification model. We prefer logistic regression over alternative models

because it provides coefficients that indicate how each feature affects the model’s decision,

is efficient to train on large datasets, and is familiar to most economists. We form an

ensemble of 10 logistic regression classifiers and class-balanced subsets of labeled and

unlabeled observations in the bootstrapped training samples.

Table 3 reports log odds ratios and z statistics for three models, where each model

is estimated without document controls, with document controls, and with document

controls, SIC Division indicators, and CPC Section indicators. Document controls include

the word count, corpus overlap, and lexical diversity of each document in a given firm-

patent pair. Model 1, which uses only SBERT similarity scores, shows that semantic

similarity is a strong predictor of patent usefulness, with odds ratios ranging from 18.36

to 53.83 depending on the specification. Model 2 adds TF-IDF similarity scores, which

contribute additional predictive power while moderating the effect of SBERT similarity.

In our preferred specification, Model 3c, which incorporates TF, TF-IDF, and SBERT

similarity scores, both SBERT and TF-IDF maintain strong positive associations with

patent usefulness (odds ratios of 20.17 and 6.56 respectively), while TF shows a weak
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Table 3: Logistic Regression on Positive and Unlabeled Data

Features Average Odds Ratios
Model 1 Model 2 Model 3

(a) (b) (c) (a) (b) (c) (a) (b) (c)

SBERT 18.36 44.50 53.83 9.14 18.58 22.70 7.14 19.78 20.17
(15.20) (34.38) (33.94) (19.06) (26.31) (28.89) (23.54) (29.27) (32.07)

TF-IDF 2.05 3.37 3.46 11.44 6.59 6.56
(17.18) (19.80) (18.36) (22.48) (16.51) (17.19)

TF 0.15 0.43 0.42
(−22.45) (−8.70) (−9.05)

F1c 0.48 0.61 0.61 0.51 0.65 0.65 0.56 0.65 0.67
Precisionc 0.54 0.59 0.60 0.55 0.62 0.62 0.57 0.62 0.63
Recall 0.73 0.80 0.80 0.74 0.80 0.81 0.76 0.80 0.81

Doc Ctrls No Yes Yes No Yes Yes No Yes Yes
Sic Ctrls No No Yes No No Yes No No Yes
Cpc Ctrls No No Yes No No Yes No No Yes
Penalty L2 L2 L2 L2 L2 L2 L2 L2 L2

Obs/Reg 15489 15480 15470 15472 15485 15465 15486 15477 15515
Reg/Ens 10 10 10 10 10 10 10 10 10
RRS 2 2 2 2 2 2 2 2 2

Notes. The table shows alpha estimates for low and high decile technology momentum portfolios upper
panel of the table shows odds ratio estimates from three logistic regression models trained on positive
and unlabeled data, with z-statistics reported in parentheses under each estimate. Model 1 uses SBERT,
Model 2 uses SBERT and TFIDF, and Model 3 uses SBERT, TFIDF, and TF similarity scores as features.
We estimate each model without controls (columns a), with document controls (columns b), and with
document, SIC, and CPC controls. All models are estimated with L2 ridge penalties applied.

negative association. The addition of document, industry, and patent category controls

improves model performance across all specifications, with model evaluations rising

substantially from the baseline Model 1a to our preferred Model 3c.

3.4 Model Evaluation

Evaluating classifiers trained on positive and unlabeled data presents unique challenges

that limit the informativeness of traditional performance metrics. In standard supervised

learning, classifier performance is typically assessed using metrics derived from the confu-

sion matrix—a matrix containing true positives (TP ), false positives (FP ), true negatives

(TN), and false negatives (FN). Two fundamental metrics are precision and recall. For

22



the positive class, precision is defined as TP/(TP + FP ), and measures the fraction of

positive predictions that are correct. Again for the positive class, recall is defined as

TP/(TP + FN), and measures the fraction of actual positive cases that are correctly

identified. Both metrics also have a symmetric definition for the negative class. The F1

score, given by 2 × (precision × recall)/(precision + recall), provides a single summary

measure that balances these two objectives.

These traditional metrics must be interpreted with caution in the positive-unlabeled

learning context. While recall can be reliably estimated using only positive examples,

precision requires false positives—positive predictions on truly negative instances. In

positive and unlabeled learning, we fundamentally cannot observe false positives since

unlabeled examples may be either positive or negative. If traditional classifier performance

metrics are applied to non-traditional classifiers, positively-predicted unlabeled instances

are treated as false positives (the standard approach) and understate precision.11

This understatement is particularly severe in settings with significant class imbalance.

Consider a classifier that correctly identifies a labeled positive instance but also predicts

positive for three out of 1,000 unlabeled instances. Even if all three of these “false

positives” are actually correct predictions of unlabeled positive cases, treating them as

errors results in a precision of 25%. Thus, even strong classifier performance can appear

poor when evaluated using traditional precision with positive and unlabeled data in a

class-imbalanced setting.

To partially address the problem of class imbalance in our model evaluation, we

follow Siblini et al. (2020) and “calibrate” our precision and F1 scores to a reference

class ratio of 1, making them more interpretable. This calibration does help with class

imbalance, but does not correct for mistaken “false positives.” We therefore rely primarily

on a robust metric that, while less interpretable, is suitable for determining the optimal

decision threshold for our classifier—that is, the threshold value above which predicted

probabilities are classified as positive. Rather than choosing the threshold to maximize the

calibrated F1c score, which remains problematic in our setting, we maximize a modified
11Under the SCAR assumption, analytical corrections can be made (Elkan and Noto, 2008), but we do

not make the SCAR assumption in our setting, as explained above.
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Table 4: Positive and Unlabeled Classifier Performance

Average Classifier Performance
Precisionc Recall F1c Support

Unlabeled Class 0.98 0.90 0.94 1,422,892
(0.00) (0.01) (0.01) (33)

Labeled Class 0.28 0.72 0.39 1,920
(0.02) (0.03) (0.02) (33)

Weighted Average 0.98 0.90 0.94 1,424,812
(0.00) (0.01) (0.01) (0)

Macro Average 0.63 0.81 0.67 1,424,812
(0.01) (0.01) (0.01) (0)

Notes. The tables shows traditional performance metrics for our classifier trained on positive and unlabeled
data. In the upper panel of the table, we report average annual precision, recall, and F1 performance
metrics computed from individual classifiers trained on yearly patent and business description data. In
the lower panel, we report weighted and unweighted (macro) averages across classes of the average annual
class-specific performance metrics. To account for the substantial class imbalance in our positive and
unlabeled data, we report calibrated precision and F1 scores, indicated by the subscript c in the first and
third columns.

version of the performance measure proposed by Lee and Liu (2003),

Modified Lee-Liu Score: λγ = rγ

Pr(ŷ = 1) , (1)

where r is recall, Pr(ŷ = 1) is the fraction of instances classified as positive, and the

parameter γ can be adjusted to place greater emphasis on recall. The threshold λγ can

be reliably estimated from positive and unlabeled data, making it suitable for positive-

unlabeled learning. We set γ = 3 to reflect our preference for higher recall.12

We present traditional evaluation metrics (with the caveats noted above) in Table 4.

These metrics are computed using repeated random sub-samples (RRS) of our training

data. The RRS procedure involves repeatedly re-partitioning the data into training

and test sets, training a new model on each training partition, and evaluating it on the

corresponding test partition. This approach provides more robust performance estimates

than a single train-test split. Within each year, we compute performance metrics and
12Lee and Liu (2003) show that their original metric with γ = 2 is proportional to the product of

precision and recall (r × p). Since the F1 score is the harmonic mean of precision and recall, their metric
captures similar information while being computable in the positive-unlabeled setting. Our choice of
γ = 3 places more emphasis on recall, which is conceptually similar to using an Fβ score with β > 1.

24



their standard errors across RRS iterations, then average both the metrics and standard

errors across sub-samples and years. After the model evaluation stage, we use all available

data to train a model for final predictions.

For the unlabeled class, our classifier achieves a calibrated precision of 0.98 and a recall

of 0.90, yielding a calibrated F1c score of 0.94. These results reflect the extreme class

imbalance in our data—with such a low base rate of positive cases, even a naive classifier

that predicts “unlabeled” for all observations would achieve near-perfect performance

here.

The more challenging metrics are those for the labeled class, where our classifier

achieves a calibrated precision of 0.28 and recall of 0.72. The low precision understates

true performance—without true negative examples, many “false positives” are likely

correct predictions of technological usefulness not captured in our labeled set. The higher

recall indicates that our classifier identifies a substantial majority of labeled instances

where a patent is owned by a particular firm and is therefore likely to be useful to the

firm. Recall may also understate true performance, if our positive labels are noisy and

contain instances of useless patents owned by firms.

The support column in Table 4 shows the scale of our evaluation, with metrics

computed over more than 1.4 million firm-patent pairs per year. The standard errors,

shown in parentheses, are computed across RRS iterations within each year and then

averaged across years. These errors indicate that our performance estimates are stable

across different random sub-samples. The substantial difference between weighted and

macro averages (0.94 versus 0.67 for F1c) shows how class imbalance affects the traditional

performance metrics even after calibration.

The ultimate test of our estimates lies in their ability to predict or explain economic

phenomena. Before turning to economic applications, however, we first examine the

usefulness probabilities estimated by the model, and use the estimates to compare the

technological associations of non-patenting and patenting firms. Despite the large number

and economic importance of non-patenting firms, their technological profiles have remained

largely unexplored by researchers due to data limitations. Our estimates remove these
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limitations, revealing surprising similarities between the technological associations of

non-patenting and patenting firms.

3.5 Model Predictions

We use Model 3c from Table 3 to predict firm-patent associations, and plot the un-

conditional results of these predictions for all years in Figure 5. The figure displays

the distribution of predicted usefulness probabilities for non-patenting firms (left) and

patenting firms (right). The upper panels show probability density functions (PDFs) with

annual distributions plotted as thin gray lines and their pointwise average as a thick black

line. The lower panels show cumulative distribution functions (CDFs) with the same line

conventions. Thin dashed lines mark the 50th and 90th percentiles, while the thin solid

vertical line indicates the classification threshold that maximizes the modified Lee-Liu

score λγ, which equals 0.82 when averaged across years.

Without conditioning on industry or firm size, we find that non-patenting firms have

lower probabilities of associating with patents overall. The median predicted usefulness

probability for non-patenting firms is 0.06, compared to 0.1 for patenting firms. Similarly,

the 90th percentile values are 0.55 and 0.76 respectively, indicating that non-patenting

firms have lower predicted associations than their patenting counterparts even at the

upper end of the distribution. However, these raw differences primarily reflect the distinct

industry and size compositions of the two firm types rather than fundamental differences

in technological associations, as we emphasize in the following section.
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Figure 5: Annual Distributions of Predicted Usefulness Probabilities
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Notes. The figure shows the distribution of predicted usefulness probabilities for non-patenting firms
(left) and patenting firms (right). Distributions are estimated from 1% samples of firm-patent usefulness
probabilities drawn from each firm’s set of usefulness probabilities each year, using kernel density functions
with reflecting barriers at 0 and 1. In the upper panels, annual PDFs are plotted as thin gray lines, and
the pointwise average of annual PDFs is plotted as a thick black line. In the lower panels, annual CDFs
are plotted as thin gray lines, and the pointwise average of annual CDFs is plotted as a thick black line.
The average of the annual 50th and 90th quantile values are indicated by thin dashed lines. The average
of the annual classification threshold that maximizes the modified Lee-Liu score is indicated by a solid
vertical line.

4 Characterizing Technological Associations

Having estimated usefulness probabilities for all firm-patent pairs, we now examine

how technological associations vary between non-patenting and patenting firm types. We

examine these associations at two levels. First, we examine aggregated patterns by studying

the intensity of technological associations between industries and technology categories by

firm type. Second, we examine firm-level patterns by studying the technological portfolios

of individual firms. At both levels, we find surprising similarities between non-patenting

and patenting firms. Cross-sectional distributions of several measures of technological

association are similar across firm types, particularly in their central tendencies. Indeed,

we find that within-type differences are much larger than between-type differences, after

conditioning on industry and firm size.
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4.1 Aggregated Technological Associations

We use Sankey diagrams to illustrate the intensity of technological associations between

industries and technology categories. We define the aggregated intensity of technological

association between SIC Division s and CPC Section c for firm type τ ∈ {NP, P} as:

I(τ)
sc = A(τ)

sc

F
(τ)
s × Pc

(2)

where A(τ)
sc is the number of firm-patent associations between Division s and Section c for

firm type τ , F (τ)
s is the number of firms of type τ in Division s, and Pc is the number of

patents in Section c. This intensity measure normalizes raw association counts by the total

number of possible firm-patent pairs in each industry-technology combination, providing

a measure that is adjusted for compositional differences in firm and patent distributions

across industries and technology categories. The Sankey diagrams in Figures 6 and 7

show the aggregated intensity-based associations for non-patenting and patenting firms,

respectively. We provide Sankey diagrams based on raw association counts in Appendix

B.1.

We draw two conclusions from the intensity-based Sankey diagrams. First, each SIC

Division shows substantial associations with multiple CPC Sections, suggesting that

technologies frequently cross industry boundaries. Second, the patterns for non-patenting

firms in Figure 6 closely resemble those for patenting firms in Figure 7. While Sankey

diagrams based on raw association counts in Appendix B.1 show greater differences, the

intensity-based view reveals strong similarities after adjusting for compositional effects.

That said, some differences between the intensity-based diagrams for non-patenting and

patenting firms are apparent upon close inspection.

To facilitate the direct comparison of aggregated technological associations between

non-patenting and patenting firms, we construct a heatmap representation in Figure

8 that quantifies differences between the Sankey diagrams in Figures 6 and 7 for each

industry-technology combination. The heatmap displays a relative intensity metric Rsc,
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Figure 6: CPC-SIC Sankey Diagram: Intensity-Based, Non-Patenting Firms
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Notes. The figure shows a Sankey diagram of associations between CPC Sections (left) and SIC Divisions
(right). Flows represent intensities of association, defined as the number of the number of associated
firm-patent pairs for a given CPC-SIC combination, relative to the number of possible firm-patent pairs
for that combination, aggregated over all sample years. CPC Sections: Human Necessities (A), Performing
Operations; Transporting (B), Chemistry; Metallurgy (C), Textiles; Paper (D), Fixed Constructions
(E), Mechanical Engineering; Lighting; Heating; Weapons; Blasting (F), Physics (G), and Electricity
(H). SIC Divisions: Agriculture, Forestry, and Fishing (0100–0999), Mining (1000–1499), Construction
(1500–1799), Manufacturing (2000–3999), Transportation, Communications, Electric, Gas and Sanitary
Service (4000–4999), Wholesale Trade (5000–5199), Retail Trade (5200–5999), Finance and Insurance
(6000–6799, excl 6500–6599 and 6700–6799), and Services (7000–8999). Some CPC and SIC names have
been shortened for the figure.
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Figure 7: CPC-SIC Sankey Diagram: Intensity-Based, Patenting Firms
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Notes. The figure shows a Sankey diagram of associations between CPC Sections (left) and SIC Divisions
(right). Flows represent intensities of association, defined as the number of the number of associated
firm-patent pairs for a given CPC-SIC combination, relative to the number of possible firm-patent pairs
for that combination, aggregated over all sample years. CPC Sections: Human Necessities (A), Performing
Operations; Transporting (B), Chemistry; Metallurgy (C), Textiles; Paper (D), Fixed Constructions
(E), Mechanical Engineering; Lighting; Heating; Weapons; Blasting (F), Physics (G), and Electricity
(H). SIC Divisions: Agriculture, Forestry, and Fishing (0100–0999), Mining (1000–1499), Construction
(1500–1799), Manufacturing (2000–3999), Transportation, Communications, Electric, Gas and Sanitary
Service (4000–4999), Wholesale Trade (5000–5199), Retail Trade (5200–5999), Finance and Insurance
(6000–6799, excl 6500–6599 and 6700–6799), and Services (7000–8999). Some CPC and SIC names have
been shortened for the figure.
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Figure 8: Relative Technological Associations: Non-Patenting vs. Patenting Firms

A B C D E F G H I

A
B
C
D
E
F
G
H

SIC Division

CPC
Section

−0.65
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Notes. The figure shows the relative intensity metric defined in equation (3) for technological associations
between CPC Sections and SIC Divisions. Red cells indicate stronger associations for non-patenting firms,
gray cells indicate stronger associations for patenting firms, and white cells indicate equal associations.
CPC Sections: Human Necessities (A), Performing Operations; Transporting (B), Chemistry; Metallurgy
(C), Textiles; Paper (D), Fixed Constructions (E), Mechanical Engineering; Lighting; Heating; Weapons;
Blasting (F), Physics (G), and Electricity (H). SIC Divisions: A (Agriculture, Forestry, and Fishing:
0100–0999), B (Mining: 1000–1499), C (Construction: 1500–1799), D (Manufacturing: 2000–3999), E
(Transportation, Communications, Electric, Gas and Sanitary Services: 4000–4999), F (Wholesale Trade:
5000–5199), G (Retail Trade: 5200–5999), H (Finance, Insurance, and Real Estate: 6000–6799, excl
6500–6599 and 6700–6799), I (Services: 7000–8999).

which we define as

Rsc = I(N)
sc − I(P )

sc

I
(N)
sc + I

(P )
sc

, (3)

where superscripts N and P denote non-patenting and patenting firms, respectively. This

bounded measure ranges from −1 to +1, with positive values (red shading) indicating

stronger technological associations for non-patenting firms and negative values (grey

shading) indicating stronger associations for patenting firms.

The heatmap reveals several systematic differences between the intensity of technologi-

cal associations for non-patenting and patenting firms. We caution, however, that some

of the strongest differences arise in industry-technology combinations with overall low

intensities. For example, the services industry shows strongly positive relative intensity

values in fixed constructions and mechanical engineering, indicating that non-patenting

service firms associate more intensively with these technologies than patenting service

firms. However, the service industry has low-intensity associations with these technologies
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overall. Conversely, chemical and metallurgical technologies show consistently negative

values across most industries, indicating that patenting firms associate more strongly with

these technologies than non-patenting firms; this is especially true in agriculture, which

shows a high-intensity association with chemistry.

Overall, a nuanced picture emerges from the aggregated results, where technologies

frequently cross industry boundaries, and industry-technology associations on an intensity

basis are surprisingly similar for non-patenting and patenting firms, with some important

differences between firm types in isolated cases. Next, we turn to firm-level evidence.

4.2 Firm-Level Technological Associations

We consider three metrics that characterize firm-level technological associations. To

assess technological breadth and depth, we count each firm’s associated patents and CPC

categories. To assess technological instability over time, we compute add and drop rates

for each firm’s associated CPC categories. To assess technological generality, we compute

the average number of industries associated with each firm’s associated patents and CPC

categories. We compute metrics at the patent level and at the CPC Group, Subclass,

Class levels. This approach allows us to assess firms’ associations with increasingly broad

technology categories. For each metric at each level, we find that differences within

non-patenting and patenting firm types exceed differences between firm types.

Categorical Associations. Our positive and unlabeled learning framework produces

usefulness probabilities that associate individual firms with individual patents. We use a

binomial testing framework to convert these firm-patent associations into probabilistic

firm-category, patent-industry, and category-industry associations, which we require in

order to compute technological breadth and depth, instability, and generality metrics at

each level of the CPC system.

To associate firms with CPC categories, we compare the count of a firm’s patent

associations within the category, relative to the count of all patents in the category, with

the count of all firms’ patent associations within the category, relative to the count of all
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firms multiplied by the count of all patents in the category. The binomial probability of

Aic associations between firm i and patents in CPC category c is given by

πic =
(

Pc

Aic

)
πAic

0c (1 − π0c)Pc−Aic , with π0c ≡
∑

i

Aic

F × Pc

, (4)

where F is the number of firms, Pc is the number of patents in category c, and π0c is the

baseline probability of a firm-patent association in category c. Under the null hypothesis,

πic = π0c and firm i is no more likely to associate with patents in category c than the

average firm. We test the alternative hypothesis that πic > π0c, and associate firms with

categories when we fail to reject the alternative hypothesis at the 5% significance level.

This approach provides a statistical framework for identifying when a firm’s relationship

with a technology category is unlikely to have arisen by chance. It adjusts for CPC category

size, requiring firms to have more patent associations in larger categories. And, because

it uses category-specific baseline probabilities, it accounts for systematic differences in

the number of associations across categories while maintaining a consistent threshold for

statistical significance.

We adopt a similar procedure to associate patents with four-digit SIC industries. The

binomial probability of Ajs associations between patent j and firms in SIC industry s is

given by

πjs =
(

Fs

Ajs

)
π

Ajs

0s (1 − π0s)Fs−Ajs , with π0s ≡
∑

j

Ajs

Fs × P
, (5)

where Fs is the number of firms in industry s, P is the number of patents, and π0s is the

baseline probability of a firm-patent association in industry s. Under the null hypothesis,

πjs = π0s and patent j is no more likely to associate with firms in SIC industry s than the

average patent. We test the alternative hypothesis that πjs > π0s, and associate patents

with industries when we fail to reject the alternative hypothesis at the 5% significance level.

We use the same procedure to associate CPC categories with four-digit SIC industries,

replacing patent j with category c and number of patents P with number of categories C

in the binomial probability calculation.
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Non-Patenting and Patenting Firm Comparisons. With the firm-level category

and industry associations in place, we can compute metrics for technological breadth and

depth, instability, and generality at the patent level and at the level of CPC Classes,

Subclasses, and Groups. We present the results in Figure 9, which plots the cross-sectional

distribution of each metric, separately for non-patenting and patenting firms, conditional

on broadly-defined industry group and size class. The industry groups (finance, service,

resource, and manufacture) and size classes (private, small, medium, and large) are those

used throughout the paper, and defined in Section 2.

Within industry group and size class, distributions for non-patenting and patenting

firms are compared on a common scale, but the scales do differ across industry groups and

size classes. We deliberately omit numerical values from the figure, to avoid distracting

from the main insight: conditional on industry group and size class, the differences within

non-patenting and patenting firm types exceed differences between firm types for each

metric at each CPC level. We report extensive tabular results with statistical tests for

differences in means and medians between firm types in Appendix B.

Panel 9a plots cross-sectional distributions of technological breadth and depth, mea-

sured at the firm level as the count of patents and CPC categories with which firms

associate. We tabulate these results in Appendix B.2. While we find large and statistically

significant differences in counts between industry groups, we find smaller differences

between size classes within industry group, and yet smaller differences between non-

patenting and patenting firms within industry group and size class. While differences

between median non-patenting and patenting firms remain statistically significant after

conditioning on industry and size, these differences are much smaller than the interquartile

range of firm-level values found within the non-patenting and patenting firm types.

We interpret counts at the patent level as measures of technological depth, and do find

consistently higher median counts for patenting firms at this level, in particular outside of

finance. As we consider increasingly broad CPC categories, we interpret the counts as

measures of technological breadth, and find that median counts for non-patenting firms

frequently exceed median counts for patenting firms. Overall, the results suggest deeper
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Figure 9: Firm-Level Technological Associations Within Industry Group and Size Class
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Notes. The figure shows cross-sectional distributions of three metrics characterizing firms’ technological
associations within industry group and size class. Panel 9a shows technological breadth and depth
measured by counts of patent and CPC category associations. Panel 9b shows technological instability
measured by CPC category churn rates (the average of add and drop rates). Panel 9c shows technological
generality measured by cross-industry usage (the average number of industries associated with each firm’s
associated patents or CPC categories). Box plots show medians, interquartile ranges, and the 10th and
90th percentiles, separately for non-patenting firms (dark) and patenting firms (light). Distributions for
non-patenting and patenting firms are compared on a common scale within industry group and size class,
but scales do differ across industry groups and size classes. Industry groups and size classes are defined in
Section 2. We report extensive tabular results with statistical tests for differences in means and medians
between firm types in Appendix B.
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technological associations for patenting firms, and broader technological associations for

non-patenting firms outside of finance.

Panel 9b plots cross-sectional distributions of technological instability, measured at

the firm level as the rate of churn in firms’ associations with CPC categories over time.

We tabulate these results in Appendix B.3. For each firm-year, we first calculate two

measures, the add rate and the drop rate of CPC categories, defined as the percentage

of CPC categories added to or dropped from a firm’s associations in year t + 1 relative

to the average number of the firm’s associated categories across years t and t + 1. We

then define the churn rate as the average of add and drop rates. As with the breadth and

depth metrics, we find that differences in the median measure of technological instability

between non-patenting and patenting firm types, conditional on industry group and size

class, are substantially smaller than interquartile ranges of firm-level values found within

either firm type.

That said, we do find statistically significant differences in median instability measures

between non-patenting and patenting firm types, conditional on industry group and

size class, with non-patenting firms generally showing higher degrees of technological

instability. Differences are generally more pronounced at the level of narrowly-defined CPC

Groups, and less pronounced for broadly-defined CPC Classes. We note, however, that

exceptions can be found; see, for example, private financial firms or large resource firms.

Overall, our results suggest that non-patenting firms have more flexible technological

portfolios, potentially adapting more quickly to changing technological opportunities. This

interpretation would align with our finding that non-patenting firms maintain broader

but shallower technological portfolios.

Panel 9c plots cross-sectional distributions of technological generality, measured at the

firm level as the average number of four-digit SIC industries associated with each firm’s

associated patents or CPC categories. We tabulate these results in Appendix B.4. For

example, a firm with associated patents A and B would have a generality value of two at

the patent level if patent A were associated with one industry and patent B were associated

with three industries (2 = (1 + 3)/2). The generality metric quantifies the extent to which
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firms’ associated technologies are in general use across multiple industries.13 Once again,

differences in technological generality are larger within firm type than between firm types,

conditional on industry group and firm size, though statistically significant differences

across types do exist.

For CPC Classes and Subclasses, which are broadly-defined technology categories,

we find that median patenting firms tend to associate with more general technologies

than median non-patenting firms, particularly in services. At the CPC Group level, we

find no clear pattern across industry groups and size classes. At the patent level, the

pattern reserves, and we find that median non-patenting firms associate with more general

technologies than median patenting firms. This result suggests that patenting firms

associate with more specific patents, but technology categories with broader cross-industry

appeal.

Taken together, these patterns in firm-level technological associations suggest that

patenting and non-patenting firms differ in systematic ways: patenting firms exhibit

deeper, more stable, and more specific technological focus than non-patenting firms, with

some exceptions in particular industry groups and size classes. However, while these

differences are statistically significant, they are small relative to the within-type variation

across all three metrics, after conditioning on industry group and size class. Ultimately,

we find modest differences and surprising similarities in the technological associations of

non-patenting and patenting firms.

5 Technological Momentum

We now explore a first application of our patent usefulness probabilities to asset pricing,

constructing technological momentum portfolios that include, for the first time, a large set

of publicly-traded non-patenting firms whose technological profiles have previously been

inaccessible to researchers. Our approach extends recent work by Lee, Sun, Wang, and
13This measure of technological generality relies on the assumption that four-digit SIC industries are

defined with equal granularity in all parts of the economy, which may not hold in practice. However, by
comparing non-patenting firms with patenting firms within broad industry groups and size classes, we
mitigate problems arising from violations of this assumption.
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Zhang (2019) and Bekkerman, Fich, and Khimich (2023) documenting the profitability

of technological momentum strategies applied to patenting firms. These authors argue

that technological momentum works because markets are slow to process technological

information, especially for technologically intensive firms with limited investor attention.

Non-patenting firms use technology as intensively as patenting firms but are typically

smaller, with less analyst coverage and more opaque technological profiles. We therefore

expect the technological momentum strategy to be particularly effective when extended

to these firms.

Our methodology differs from prior approaches in two key ways. First, we expand

coverage to include a majority of publicly-traded firms that do not patent and were

previously excluded. Second, we measure technological similarity based on firms’ exposure

to useful technology rather than ownership of intellectual property. This distinction

matters because firms often patent for strategic reasons unrelated to their core technological

activities (Cohen, Nelson, and Walsh, 2000). Overall, these differences allow us to capture

broader technological relationships for a wider set of firms.

5.1 Methodology

Technological momentum strategies exploit predictable patterns in how technology-related

information affects stock prices. The strategy identifies firms with similar technological

profiles, then takes long positions in firms whose technological peers recently performed well

and short positions in firms whose peers performed poorly. Prior research demonstrates

that technological peer performance predicts future returns, generating significant alpha.

In implementations of this strategy by Lee et al. (2019) and Bekkerman, Fich, and

Khimich (2023), technological similarity is measured using the patent portfolios of patent-

ing firms. Lee et al. (2019) computes the distribution of patents owned by patenting

firms across USPTO classes, and correlates these distributions for pairs of patenting firms

to assess firm-to-firm technological similarity, following Jaffe (1986). Bekkerman, Fich,

and Khimich (2023) measure patent-to-patent textual similarity as the cosine similarity

between TF-IDF vectors for each patent, and then average these over the patents owned
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by patenting firms to assess firm-to-firm technological similarity. Both methods consider

only patenting firms, excluding the majority of publicly-traded firms from the analysis.

To extend the technological momentum strategy to this excluded majority, we use our

estimated usefulness probabilities to identify technological peers. These probabilities are

available for all U.S. public firms and an annual sample of 50,000 patents, covering the

period from 1997 to 2023. As noted in Section 2.4, only 15.64% of CRSP firms receive

patent grants in an average year, accounting for 46.29% of CRSP market capitalization

(or 25.07% of CRSP firms accounting for 54.08% of CRSP market capitalization, when

counting patents in five-year rolling windows), so the expansion to non-patenting firms

significantly improves coverage.

Because we estimate similarity scores between each firm and each patent each year,

we can assess firm-to-firm technological similarity by computing the cosine similarity

between vectors of patent-level usefulness probabilities directly. With 50,000 entries, each

vector constitutes a highly granular technological profile of each firm. The usefulness

probabilities in most of these entries lie below the classification threshold that maximizes

the modified Lee-Liu score from the positive and unlabeled learning step.14 We set

usefulness probabilities below the threshold to zero before the similarity calculation.

For focal firm i and month t, we calculate the weighted average return on a portfolio

of the focal firm’s top 100 technologically similar peers,

TECHRETit =
∑

j ̸=i wijt × RETjt∑
j ̸=i wijt

(6)

where RETjt is the return of firm j in month t and wijt is the lagged technological

cosine similarity between firms i and j. We lag technological cosine similarity weights to

avoid look-ahead bias. Specifically, the weight wijt used in month t is the firm-to-firm

technological similarity computed from patent grants and annual reports in year yt − 1,

where yt denotes the year in which month t occurs. Since annual reports are filed once

per year and our similarity measures are calculated annually, all months within a given

calendar year use the same set of lagged similarity weights from the previous year’s annual
14The threshold varies from year to year, averaging 0.82 across all years, 1997 to 2023.
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Figure 10: Technology Momentum Decile Transition Matrices
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Notes. The figure shows monthly transition probabilities for firms sorted into deciles based on the prior
month’s stock market performance of technologically-similar peers, for non-patenting firms (left) and
patenting firms (right). The transition probabilities are estimated using monthly returns data over the
period 1998 to 2023. The portfolios are formed on the universe of CRSP firms with available annual
reports, after a sample selection rule is applied. Technological similarity is measured using the cosine
similarity between vectors of each firm’s patent usefulness probabilities. Each firm’s peer group is defined
as the 100 most technologically-similar firms. The transition probabilities reflect the likelihood of a firm
moving between decile portfolios from one month to the next, indicating the persistence of performance
for decile portfolios formed on technological momentum.

reports and patent grants. For example, portfolio returns calculated in any month of 2020

use similarity weights computed from 2019 annual reports and patent grants.

We then sort firms into deciles based on lagged TECHRET values from the previous

month, and form portfolios that go long the top decile (firms whose technological peers

performed well in the previous month) and short the bottom decile (firms whose tech-

nological peers performed poorly). These portfolios are rebalanced monthly to maintain

either equal or value weights. To be included in a decile portfolio, firms must have filed

an annual report in the previous year and, to ensure tradability, must be above the 10th

percentile of CRSP firms’ one-month lagged prices, market values, and trading volumes.

Figure 10 shows the transition matrices for technological momentum deciles for non-

patenting firms (left) and patenting firms (right). Each cell (m, n) represents the probability

of a firm moving from decile m in the current month to decile n in the next month. The

diagonal elements indicate performance persistence—firms remaining in the same decile
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Figure 11: Monthly Alpha of Technology Momentum Decile Portfolios
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Notes. The figure shows monthly alpha estimates in percentage points for equal-weighted and value-
weighted decile portfolios formed on the recent performance of technological peers, where L represents
the lowest decile and H the highest. We estimate alpha using a four-factor model that includes market,
size, value, and cross-sectional momentum factors. Lines extending from each bar show 95% confidence
intervals. The portfolios are formed on the universe of CRSP firms, after a sample selection rule is applied.
Portfolios are rebalanced monthly over the period January 1998 to December 2023 based on technology
momentum decile rankings.

from one month to the next. The transition matrices show that non-patenting firms are

substantially more likely than patenting firms to remain in the highest and lowest deciles

from one month to the next. This result suggests that technological information diffuses

more slowly for non-patenting firms, creating more persistent return predictability. As we

demonstrate next, this improved predictability translates into improved performance for

the technological momentum strategy.

5.2 Empirical Results

Figure 11 presents the monthly alphas for technological momentum portfolio excess returns

across deciles, reported separately for non-patenting and patenting firms and for equal

and value-weighted portfolios. The alphas are estimated from a four-factor model that

controls for exposure to market, size, value, and cross-sectional momentum factors.15 For
15These four factors, commonly denoted MKT, SMB, HML, and MOM, were downloaded from the

data library on Ken French’s website (link) on 10 March 2024.
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equal-weighted portfolios, the results reveal a striking monotonic pattern across deciles,

with higher technological momentum deciles consistently earning higher risk-adjusted

returns. This pattern is particularly pronounced for non-patenting firms, where the spread

between high and low deciles is substantially larger than for patenting firms.

Table 5 reports the factor loadings for the technological momentum strategy. The

high-minus-low portfolio loads negatively on the market factor and positively on the size

factor for both non-patenting and patenting firms. Importantly, these factor exposures do

not explain away the substantial alphas generated by the strategy, suggesting that the

strategy represents a distinct anomaly not captured by standard risk factors, consistent

with the findings of both Lee et al. (2019) and Bekkerman, Fich, and Khimich (2023).

Table B43 in Appendix B.5 demonstrates that these results are robust to alternative

asset pricing models, with monthly alphas for non-patenting firms ranging from 1.79%

to 2.48% depending on the specification. The technological momentum results remains

economically and statistically significant across all model specifications.
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Table 5: Technology Momentum Four-Factor Model Loadings for Non-Patenting and Patenting Firms

Non-Patenting Firms Patenting Firms

Equal-
Weighted

Decile Alpha MKT SMB HML MOM

High 0.89 1.03 0.97 −0.04 −0.09
(3.75) (18.43) (12.62) (−0.59) (−1.85)

Low −1.24 1.16 0.83 −0.10 −0.27
(−4.66) (18.65) (9.61) (−1.26) (−4.86)

High–Low 1.97 −0.13 0.15 0.06 0.18
(4.74) (−1.36) (1.09) (0.45) (2.02)

Alpha MKT SMB HML MOM

0.74 0.91 1.39 −0.55 −0.11
(2.24) (11.67) (12.95) (−5.68) (−1.52)

−0.28 1.23 0.70 −0.19 −0.22
(−1.04) (19.27) (7.96) (−2.33) (−3.80)

0.87 −0.32 0.69 −0.37 0.11
(1.69) (−2.66) (4.14) (−2.44) (1.01)

Value-
Weighted

High 0.51 0.97 0.07 0.08 0.08
(2.22) (17.85) (0.89) (1.17) (1.58)

Low −0.38 1.12 0.22 −0.14 −0.14
(−1.58) (19.95) (2.79) (−2.02) (−2.78)

High–Low 0.74 −0.15 −0.15 0.22 0.21
(1.88) (−1.63) (−1.17) (1.90) (2.60)

0.24 0.90 0.17 −0.30 0.01
(0.92) (14.44) (1.95) (−3.89) (0.17)
0.27 1.13 −0.03 −0.17 −0.13

(1.06) (19.24) (−0.31) (−2.34) (−2.45)
−0.18 −0.23 0.19 −0.13 0.14

(−0.42) (−2.30) (1.39) (−1.04) (1.51)

Notes. The table shows factor loadings from a four-factor model estimated using monthly excess returns from 1998 to 2023 for equal-weighted and value-weighted
technology momentum portfolios, for non-patenting and patenting firms. Each sub-table shows factor loadings for high-decile and low-decile portfolios, as well as
for a high-minus-low portfolio. T-statistics are reported in parentheses under each alpha estimate.
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Our equal-weighted long-short portfolio generates a monthly alpha of 1.97% (t-statistic

= 4.74) after controlling for the market, size, value, and momentum factors. This

performance exceeds the 1.17% monthly alpha reported by Lee et al. (2019), though

their alpha is estimated over a longer period 1963–2012. Bekkerman, Fich, and Khimich

(2023) report a 1.29% monthly alpha for their text-based approach over the period 1977-

2016. However, as Bekkerman, Fich, and Khimich (2023) document, the performance

of technological momentum strategies has fallen over time, not risen, so the historical

monthly alpha likely overstates performance in recent years. In that sense, our shorter

and more recent sample period (1998–2023) works against finding strong results, reducing

both statistical power and alpha. Despite this challenging sample period, the alpha we

find for non-patenting firms remains statistically significant and exceeds that of previous

studies, showing the effectiveness of our approach in identifying technological relationships

that extend beyond traditional patent-based measures.

Figure 12 illustrates the cumulative performance of the high-decile technological

momentum portfolio from 1998 to 2023, compared against standard technology benchmarks,

on both natural and logarithmic scales. The shaded areas indicate NBER-dated recessions.

For non-patenting firms, both equal and value-weighted high-decile portfolios substantially

outperform the benchmarks over this period, with the equal-weighted portfolio performing

particularly well. In contrast, a value-weighted technological momentum strategy for

patenting firms performs no better than the technology benchmarks.

5.3 Economic Mechanism

What explains the superior performance of our strategy compared to previous approaches?

We propose that the key factor is our ability to identify technological relationships for

firms that do not directly own patents. These firms are substantially exposed to technology

shocks through their use of technology in production, their dependence on complementary

innovations, or their positions in broader technology networks, but their exposures have

remained opaque to market participants.

Consistent with Lee et al. (2019) and Bekkerman, Fich, and Khimich (2023), investors
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Figure 12: Cumulative Growth of High-Decile Technology Momentum Portfolio
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Notes. The figure shows the cumulative growth of a $1 investment in equal-weighted and value-weighted
high-decile technology momentum portfolios of stocks for non-patenting and patenting firms from 1998 to
2023. For comparison, the figure also shows the cumulative growth of four benchmark indices: NYSE
Technology, S&P North American Technology Sector, FTSE All-World Technology, and Russell 2000
Technology. Panel 12a plots this growth on the natural scale, while Panel 12b plots it on the logarithmic
scale. Technology momentum decile portfolios are formed on the universe of CRSP firms, after dropping
the bottom 10% of firms by price, market capitalization, and trading volume. Portfolios are rebalanced
monthly based on the recent performance of each firm’s technological peers. Shading indicates U.S.
recession dates.
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appear to systematically underreact to technological information. This underreaction is

more pronounced for non-patenting firms with less transparent technological profiles. The

stronger persistence in decile membership for non-patenting firms, shown in Figure 10,

supports this interpretation. Our results extend previous research by demonstrating that

technological momentum effects are not limited to patenting firms but affect the broader

universe of publicly-traded companies.

6 Technological Spillovers

The size and direction of technological spillovers between firms remains an unresolved

question in the economics of innovation. When innovations emerge, do they mainly benefit

the broader economy, or do they mainly benefit innovators at the expense of competitors?

Theoretical arguments for positive spillovers are compelling. Jaffe (1986) shows

that R&D spillovers flow through technological proximity, with firms in related spaces

benefiting from each other’s innovations. Romer (1989) emphasizes that knowledge is non-

rivalrous—multiple firms can use the same ideas without diminishing their value. Jones

and Williams (1998) shows how knowledge accumulation creates positive feedback loops.

These mechanisms suggest innovation generates social returns beyond what innovators

capture.

Yet persuasive arguments also exist for negative spillovers. Schumpeter’s creative

destruction theory posits that innovation displaces existing technologies and the firms

using them. Aghion and Howitt (1992) formalize how innovation makes existing products

obsolete, imposing losses on incumbents while producing economic growth. Arora, Cecca-

gnoli, and Cohen (2008) document how patenting firms extract rents from competitors,

while Bloom, Schankerman, and Van Reenen (2013) show that product market rivalry

can cause innovations to harm technologically-related firms. These competitive dynamics

generate what Kogan et al. (2017) term “substantial growth, reallocation, and creative

destruction.”

The stock market approach to measuring these spillover effects builds on pioneering
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work by Pakes (1985), who documented empirical relationships between patents, R&D

expenditures, and stock market valuations. Building on this foundation, Austin (1993)

developed event-study methods to estimate individual patent values in biotechnology,

finding that product-linked patents generate significantly higher returns and that rival

firms experience negative returns from competitor patents. Kogan et al. (2017) extended

this approach by developing a comprehensive measure of patent values spanning 1926-2010,

using filtered stock price reactions around patent grant dates. More recently, Chen, Wu,

and Yang (2019) applied similar techniques to FinTech innovations, using machine learning

to classify and value patents in this emerging sector.

However, these approaches share a fundamental limitation: they capture only the pri-

vate returns to patent owners. Even Kogan et al. (2017)’s findings of creative destruction—

where competitor innovation reduces firm growth—rely on comparing patenting firms

within industries. Their aggregate innovation index, while useful for studying economy-

wide effects, cannot distinguish between spillovers to non-patenting firms and private

benefits captured by innovators. This limitation is consequential given that the majority

of public firms do not patent, leaving the net effect of technological spillovers empirically

unresolved.

We revisit the question of technological spillovers using our novel usefulness probabilities

to measure firms’ exposure to patents. This approach overcomes a limitation of prior work

by examining stock market reactions across all firms affected by a patent grant, not just

the patent owner. Importantly, we separately estimate effects on non-patenting firms—

who comprise the majority of public firms but whose distinct responses have not been

isolated in prior work—from effects on patenting firms. This distinction matters because

non-patenting firms may experience different spillover patterns than their patenting

counterparts, yet their aggregate response determines whether innovation generates net

social benefits or merely redistributes profits among competitors.
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6.1 Methodology

To analyze how innovation affects technologically-related firms, we use an event study

methodology. Following Austin (1993), Kogan et al. (2017), and Chen, Wu, and Yang

(2019), we examine stock returns around patent event dates (grant dates as opposed to

application dates, in our case) to measure patents’ impact on firm value.

Our setting presents unique challenges. Traditional event studies examine how patent-

ing firms react to their own patent grants, which are relatively infrequent. In contrast, we

measure how all firms react to all patent grants based on our estimates of technological

usefulness. This creates two complications. First, with thousands of patents granted

weekly, nearly every firm is “treated,” at some level, on patent grant days. Second, firms

are exposed to patents with varying degrees of technological relevance, as captured by our

continuous usefulness probability measures.

We address these challenges using a two-stage approach. In the first stage, we calculate

cumulative abnormal returns (CARs) for every firm following every patent grant date. We

estimate normal returns using the Fama-French five-factor model over days −250 to −31

before each patent grant, excluding the 30 days immediately prior to avoid information

leakage. Since patents are always granted on Tuesdays, we include day-of-week fixed

effects to separate patent impacts from weekly trading patterns, and to control for the

generalized effect of patent grants.

In the second stage, we then compute the number of expected useful patents for each

firm on each event date:

SumProbit =
∑
j∈Pt

p̂ij · 1[p̂ij > λγ] , (7)

where Pt denotes the set of patents granted on date t, p̂ij is our estimated usefulness

probability for patent j to firm i, and λγ is the modified Lee-Liu threshold from our

positive-unlabeled learning classifier. The threshold λγ serves two purposes: it filters out

noise from low-relevance patents and ensures our results aren’t mechanically driven by the

total volume of patents granted on any given day. We then regress the first-stage CARs
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Figure 13: Event Study Coefficient Estimates and Confidence Interval
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Notes. The figure shows coefficient estimates and 95% confidence intervals (measured in basis points) from
regressions of cumulative abnormal returns on firm-level patent usefulness measures at different horizons
following patent grant announcement dates. Abnormal returns are calculated using the Fama-French
five-factor model. The dependent variable is the firm-level cumulative abnormal return from day 1 to
day t, where t ranges from 1 to 30 days after the USPTO patent grant announcement date (typically
occurring on Tuesdays). The independent variable is the number of patents predicted to be useful (at a
90% usefulness probability threshold) on each announcement date for each firm. The black dots show the
estimated coefficients at each horizon, while the gray shaded area represents 95% confidence intervals.
The results indicate that firms’ stock prices respond positively and significantly to the announcement of
patents predicted to be useful to them, with the effect growing to approximately 3 basis points per useful
patent over 30 days, suggesting markets gradually incorporate information about technological spillovers
to non-patent-owning firms.

on the expected number of useful patents. Our regression specification is given by

CARi,t+h = βhSumProbit + εi,t+h , (8)

where CARi,t+h is the cumulative abnormal return for firm i over horizon h following

patents granted on date t, spanning horizons from 1 to 30 days. We cluster standard

errors at the patent grant date level to address correlation from multiple firms responding

to the same patent grants (see Kolari and Pynnönen, 2010, for a related discussion).

6.2 Empirical Results

Figure 13 shows coefficient estimates βh at each horizon from 1 to 30 days following patent

grant dates. The left panel presents results for non-patenting firms, the right panel for

patenting firms. Shaded areas indicate 90% and 95% confidence intervals.

Three key findings emerge. First, cumulative abnormal returns increase significantly
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and persistently following the grant of technologically-relevant patents. The effect builds

gradually over the 30-day window, suggesting markets require time to incorporate infor-

mation about technological spillovers. Second, both non-patenting and patenting firms

experience positive abnormal returns when exposed to useful patents. Non-patenting

firms gain 0.92 basis points per useful patent over 30 days (p < 0.10), while patenting

firms gain 0.98 basis points (p < 0.05). These results provide direct evidence of positive

technological spillovers—firms benefit from innovations even when they lack ownership

rights. Third, the magnitude of spillovers is similar across firm types. The 0.06 basis point

difference, while suggesting patenting firms may be slightly better positioned to exploit

innovations, is economically small. This similarity challenges the view that only innovative

firms can effectively absorb new technologies. These findings contribute new evidence

to a long-standing empirical debate. Using our technological usefulness probabilities, we

find that positive spillovers dominate: innovations generate benefits that extend beyond

patent owners to the broader economy.

7 Conclusion

We develop a novel measure of firm-level technological usefulness by applying positive

and unlabeled machine learning to patent and business descriptions. Our methodology

addresses a fundamental limitation in the economics literature: existing datasets focus

on the small minority of firms that own patents, while the technological profiles of most

firms remain unobserved. By measuring the usefulness of patents to all firms rather than

just their owners, we create a technology dataset that covers all U.S. public firms and all

economically important technology categories.

Our analysis reveals three key findings. First, technological associations between

non-patenting and patenting firms are remarkably similar after controlling for industry

and size. Non-patenting firms maintain broader but shallower technological portfolios than

patenting firms, with higher rates of technological instability, and greater technological

generality. Second, we document substantial return predictability from technological
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momentum strategies, with monthly alphas of 1.97% for non-patenting firms—significantly

exceeding the performance of similar strategies applied only to patenting firms. Third,

event study evidence shows that firms experience positive abnormal returns following

announcements of patents we identify as useful to them, even when they do not own

the patents. These results suggest that technological spillovers extend far beyond patent

ownership.

Our approach has several limitations that future research should address. Our method

assumes that firms’ technological activities are reflected in their public disclosures, though

firms may use technologies they do not mention or strategically withhold information.

Additionally, while our usefulness probabilities strongly predict patent ownership patterns,

they remain estimates that may not fully capture the complexity of how firms use

technology. Furthermore, our textual analysis depends on the quality and specificity

of language in patent and business descriptions, though modern language models help

mitigate concerns about ambiguity or technical jargon. Finally, our focus on U.S. firms

and patents may limit generalizability to other institutional or international contexts.

Despite these limitations, our work makes important contributions. Methodologically,

we introduce positive and unlabeled learning to economics, demonstrating how machine

learning can address missing data problems that have constrained empirical research.

Substantively, we provide the first comprehensive view of technology usage across all

public firms, revealing that non-patenting firms—which account for over half of market

capitalization—have rich technological profiles that matter for asset prices and firm

performance. By moving beyond patent ownership to measure technological usefulness,

we open new avenues for research on innovation, productivity, and technological change

across the entire economy.
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