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A Empirical Appendix

Appendix A details the empirical methodology used in Section 3. It outlines the reporting
standards for short positions (A.1), describes the procedures for estimating bilateral debt
holdings by issuer and currency (A.2), and explains the computation of domestic currency
bias and portfolio returns (A.3).

A.1 Short Position Reporting Standards

The main IMF reporting standards for international financial statistics are published in
two documents: the Balance of Payments Manual (BPM) and the CPIS Survey Guide
(CSG). The BPM is the more established of the two standards, it was first published in
1948, and it governs broadly the reporting of international financial statistics at the country
level. The CSG is narrower in scope, and younger than the BPM. Until the turn of the
century, no definitive reporting standard for short positions appeared in either publication:
the fifth edition BPM makes no mention of short positions whatsoever (International
Monetary Fund, 1993), and the first edition CSG describes possible methods for reporting
short positions, but provides no definitive standard (International Monetary Fund, 1996,
para. 93 and Box 4). After the turn of the century, the second edition CSG published
clearer guidance: “If (when) the security is on-sold, the ‘borrower’ of the security should
record a ‘short’ position” (International Monetary Fund, 2002, para. 3.78), and then,
seven years later, the sixth edition BPM established the definitive standard that applies
today:

Short positions occur when an institutional unit sells securities for which it
is not the economic owner. [. . . ] Delivery to the purchaser is made through
the use of a borrowed security. The party with the short position records a
negative value for the holding of the asset. The short position is shown as a
negative asset, rather than a liability. (International Monetary Fund, 2009,
para. 7.28)

The most recent third edition CSG now cites the sixth edition BPM when describing
short position reporting (Josyula, 2018, para. 3.52). A third document, the Handbook
on Securities Statistics (HSS), jointly produced by the IMF, the BIS, and the ECB, was
released in parts starting in 2009. Its second part, published in 2010, covers debt securities
holdings and follows the sixth edition BPM (International Monetary Fund, 2010, para
4.15).

While 2009 marks the introduction of a definitive standard for the reporting of short
positions in international financial statistics, the reporting standard was not immediately
implemented by all reporting countries. Press releases and country-level reporting guides
from the years following the publication of the sixth edition BPM indicate that the
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Figure A1 – Negative Net Positions in International Debt Holdings
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Notes. The figures show the relative count and value of reported negative net debt positions,
aggregated across CPIS-reporting countries annually. Aggregate net positions equal the sum of
gross long and gross short positions, with the latter being negative or zero. The left panel shows
the relative frequency of negative net positions, calculated as their count divided by the count of
all net positions. The right panel shows the relative value of negative net positions, computed as
their absolute value divided by the value of all net positions.

standard had been implemented by many countries by 2015.1 For example, the ECB
announced that Eurostat would disseminate statistics under the new standard beginning
in October 2014 (European Central Bank, 2014a). Figure A1 shows no significant change
in relative counts and relative values of reported short positions in the years following the
publication of the new reporting standard in 2009, and values remain low.

A.2 Estimating Debt Holdings by Issuer and Currency

This section describes how we estimate country-level debt holdings by currency, which we
use in Table 1 and Figure 2. Our approach combines the procedures in Fidora et al. (2007)
for estimating investor-country holdings of domestic debt and in Lane and Shambaugh
(2010) for estimating the currency composition of investor-country holdings of international
debt.2

Throughout this section, debt holdings refer to country-level aggregate net debt holdings
in nominal terms in numéraire currency USD, where aggregate net means the sum of
long positions (with positive sign) and short positions (with negative sign) over all agents
(households, firms, government) residing in a given country. Abusing the notation of
our theoretical model, we denote these holdings Bijt, although they are nominal here.
Domestic debt holdings refer to debt held by residents of a given country that was issued by
residents of the same country. International debt holdings refer to debt held by residents
of a given country that was issued by residents of another country. Debt may be issued in

1The United States has not adopted the BPM6 standard for reporting short positions, instead
reporting gross long positions to CPIS without netting gross short positions.

2Allen et al. (2023) update the work of Lane and Shambaugh (2010) using confidential IMF survey
data. However, their estimates exclude domestic holdings and are available by currency only, rather than
by currency and issuer, making them less suitable for our study.
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domestic or international markets (as defined by the BIS), and the issuance market, as a
concept, is distinct from the residence of the issuer or holder of debt.3

In subsection A.2.1, we use gravity models to estimate the domestic and international
debt holdings of investor countries by issuer country. We first estimate a model for
international debt holdings, then a second model for both domestic and international debt
holdings. In subsection A.2.2, we estimate currency weights, which allow us to compute
domestic and international debt holdings of investor countries, by issuer country and
issuance currency. The initial weights are based on the reported currency composition of
debt issued in international markets, but we adjust these weights to account for holdings
of international debt issued in the domestic market of the issuer. Finally, we use a
biproportional fitting procedure to reconcile the estimated debt holdings of investor
country by issuer country and issuance currency with reported debt holdings by and
issuance currency alone.

A.2.1 Estimating Debt Holdings by Issuer Country

We now estimate portfolio holdings by issuer country. We proceed in three steps. In
step one, we fit a first-stage gravity model to CPIS-reported international debt holdings,
and use the fitted first-stage model to obtain first-stage predictions of international debt
holdings for non-reporting countries. In step two, we estimate domestic debt holdings as
the residual difference between total debt issuance and rest-of-world international debt
holdings for each issuer country. In step three, we fit a second-stage gravity model to
domestic and international debt holdings, and use the fitted second-stage model to obtain
final predictions of domestic and international debt holdings for non-reporting countries.

Step One. We fit a first-stage gravity model to CPIS-reported international debt
holdings using pseudo-Poisson maximum likelihood (PPML), which performs well in
the presence of heteroskedasticity (Silva and Tenreyro, 2006; Santos Silva and Tenreyro,
2022). Our unbalanced panel contains 177 981 investor-issuer-year observations spanning
2001–2021 and covering 83 investor countries and 196 issuer countries. Because we use
the model to predict missing debt holdings for non-reporting countries, we limit regressors
to those with good coverage across countries to minimize data loss.

The gravity variables we select, obtained from Conte and Mayer (2022), include
geographic distance, a contiguity indicator, a common language indicator, GDP, GDP per
capita, an EU membership indicator, and a WTO membership indicator. Additionally,
we construct a common-currency indicator, a tax haven indicator based on the list in

3For example, a German resident might issue German debt in German debt markets under German
law, that is held by a US resident. From the US perspective, this represents holdings of international
debt issued in the German domestic market. Alternatively, a German resident might issue German debt
in a US market under US law, that is held by a German resident. From the German perspective, this
represents holdings of domestic debt issued in the German international market.
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Coppola et al. (2021) (used for interaction terms), and a crisis indicator for both investor
and issuer countries from the banking, debt, and currency crises identified by Nguyen
et al. (2022). We also include interactions for investor and issuer EU membership, WTO
membership, GDP, GDP per capita. Finally, we include investor, issuer, and year fixed
effects. Our specification is given by

E
[
Bijt | Xijt, IT ijt, FE ijt

]
= exp

(
β′

XXijt + β′
ITIT ijt + β′

FEFE ijt

)
, i ̸= j , (A1)

where Bijt denotes investor country i’s holding of debt issued by country j in year t. The
vector Xijt collects a constant and the gravity and indicator variables. The vector IT ijt

collects interaction terms, and FE ijt collects fixed effects.
After dropping 5 multicollinear fixed effects using QR decomposition, we estimate the

first-stage model with 302 regressors and 171 789 observations.4 We estimate the model
both with and without L2 regularization (α = 0.0001). Our preferred estimates, used in
Table 1 and Figure 2, include regularization. First-stage results for a subset of regressors
are reported in columns two and four of Table A1. The correlation between predicted and
observed values is 93.0 without regularization and 92.88 with regularization.

Step Two. We compute domestic holdings of domestic debt as the residual between total
reported issuance amounts outstanding and the sum of reported plus gravity-estimated
rest-of-world holdings for issuer countries with available data.

Total issuance amounts outstanding are available for 38 countries in the BIS Debt
Securities Statistics (DSS) with good coverage over our sample period. For 20 additional
countries with poor or no DSS coverage, we approximate total issuance by summing
domestic and international market issuance amounts from the BIS International Debt
Statistics (IDS).5

To measure rest-of-world holdings of issuer-country debt, we aggregate CPIS-reported
holdings for reporting countries and first-stage gravity-estimated holdings for non-reporting
countries. This aggregate covers all economic sectors (including government) except for
central banks. Central Bank holdings are reported separately in the IMF’s Securities Held
as Foreign Exchange Reserves (SEFER) survey. We add SEFER-reported holdings to the
CPIS aggregate to obtain an estimate of total rest-of-world holdings.

Following Fidora et al. (2007), we define domestic holdings of domestic debt as the

4Our implementation of QR decomposition removes the fixed effects with the lowest-valued diagonal
elements of the R matrix until the condition number equals approximately 50.

5As Gruić and Wooldridge (2012) note, summing domestic and international issuance may involve
double-counting. However, in cases where both DSS and IDS total issuance are available, we find the
totals to be very similar. DSS data represent 87.13% of total reported issuance in an average year in our
sample, and IDS data represent 12.87%.
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Table A1 – First- and Second-Stage PPML Gravity Model Estimation

Independent
Variable

No Regularization L2 Regularization

Stage One Stage Two Stage One Stage Two

Constant −17.91 −11.95 −7.07 −7.62
(0.00) (0.00)

Distance −0.39 −0.48 −0.38 −0.48
(0.00) (0.00)

Common Language 0.23 0.27 0.23 0.27
(0.00) (0.00)

Common Currency 0.68 0.93 0.68 0.93
(0.00) (0.00)

Investor GDP 3.50 1.75 1.22 1.23
(0.00) (0.00)

Issuer GDP 4.71 1.15 1.86 1.76
(0.00) (0.00)

Investor GDP/Cap −0.68 1.26 1.31 1.67
(0.00) (0.00)

Issuer GDP/Cap −1.81 1.76 0.67 1.27
(0.00) (0.00)

Domestic Debt 6.19 6.14
(0.00)

Domestic Debt × Investor GDP −0.49 −0.48
(0.00)

Domestic Debt × Investor GDP/Cap −2.69 −2.67
(0.00)

Domestic Debt × Investor Tax Haven −1.42 −1.40
(0.00)

Year FE Yes Yes Yes Yes
Investor and Issuer FE Yes Yes Yes Yes
Observations 171 789 172 811 171 789 172 811
Correlation 93.00 99.55 92.88 99.55

Notes. The table reports PPML estimates from the first- and second-stage gravity models
described in Section A.2.1. The first stage uses CPIS-reported international debt holdings; the
second stage incorporates domestic debt holdings computed as the residual between total issuance
and rest-of-world holdings. P-values appear below coefficient estimates, and the observation
counts and correlation between observed and predicted holdings are reported at the bottom of
the table. Columns labeled “L2 Regularization” apply a penalty parameter of α = 0.0001, and
no p-values are available for those specifications. Fixed effects and less economically-significant
covariates are omitted.
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difference between total issuance amounts outstanding and total rest-of-world holdings:

Biit = Iit − B−iit , where B−iit ≡
∑
j ̸=i

Bjit + BCBit , (A2)

where Iit denotes issuer-country i’s total debt issuance amounts outstanding, BCBit

represents SEFER-reported central bank holdings of country i’s debt, and B−iit denotes
rest-of-world holdings of debt issued by country i.

For six countries (Estonia, India, Ireland, Lebanon, Luxembourg, and Taiwan), CPIS-
reported rest-of-world holdings alone, before adding gravity-estimated holdings, exceed
total reported outstanding issuance. In these cases, which together account for 2.27%
of total reported outstanding issuance in an average year, the residual-based estimates
of domestic debt holdings become negative and we exclude them, instead relying on
second-stage gravity estimates, described next.

Step Three. We fit a second-stage gravity model that incorporates both the CPIS-
reported international debt holdings and the residual-based domestic debt holdings from
the previous steps. We continue to use the PPML estimator and the same baseline
regressors, but we now add a domestic debt indicator (equaling one if the investor and
issuer countries coincide) and interact this indicator with GDP, GDP per capita, and
the tax haven indicator. All continuous variables remain logged and standardized. Our
specification is given by

E
[
Bijt | Xijt, IT ijt, FE ijt, DOM ijt

]
= exp

(
β⊤

XXijt + β⊤
ITIT ijt + β⊤

FEFE ijt + β⊤
DOM DOM ijt

)
,

(A3)

where Bijt now encompasses both reported international and residual-based domestic debt
holdings. The vector DOM ijt contains a domestic debt indicator that equals one for
i = j and zero otherwise, and its interactions.

Columns three and five of Table A1 present the second-stage results. The coefficient
on the domestic debt indicator is economically and statistically significant, reflecting a
strong domestic bias. By contrast, the interaction terms with GDP per capita and the
tax haven indicator are significantly negative, suggesting that wealthier countries and tax
havens exhibit a smaller incremental domestic bias once we control for other factors. This
does not imply that they hold less domestic debt in absolute terms or as a share of total
debt; rather, it implies only that the domestic debt indicator effect is attenuated.

After fitting the second-stage model, we recalculate rest-of-world holdings by combining
CPIS-reported debt holdings with second-stage gravity-estimated debt holdings for non-
reporting countries, then update our residual-based estimates of domestic debt holdings
accordingly. Our final data set of bilateral debt holdings thus includes both reported and
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estimated holdings of international and domestic debt for all countries in our sample.

A.2.2 Estimating Weights by Issuer Country and Issuance Currency

To obtain estimates of investor-country debt holdings by issuer and currency, we proceed
in five steps. First, we compute holding weights to capture each issuer’s share in the total
holdings of each investor country. Second, we compute international-market issuance
weights to capture the currency denomination of debt issued by each investor country in
international markets. Third, we compute access weights to capture the extent to which
domestic and international investors access the issuer’s domestic and international markets.
Fourth, we combine these issuance and access weights to obtain initial portfolio weights.
Fifth, we adjust the initial portfolio weights using a biproportional fitting algorithm to
match the currency composition of total debt holdings reported by investor countries in
CPIS. The final portfolio weights decompose each investor country’s total debt holdings
into holdings by issuer country and issuance currency.

Step One: Holding Weights. We compute holding weights as issuer country shares
in the total debt holdings of investor countries. Holding weights for investor-country i

satisfy following identity,

Bit =
∑

j

Bijt ⇔ 1 =
∑

j

bijt , (A4)

where Bit denotes the total debt holdings of country i and bijt ≡ Bijt/Bit denotes the
share of debt issued by country j in the total debt holdings of country i.

Step Two: Access Weights. We compute access weights based on the difference
between total rest-of-world holdings and total international-market debt issuance for
each issuer country. If the difference is positive, with rest-of-world holdings exceeding
international-market issuance, we infer that international investors hold debt from the
issuer’s domestic market. If the difference is negative, with international-market debt
issuance exceeding rest-of-world holdings, we infer that domestic investors hold debt from
the issuer’s international market.6

6The BIS distinguishes between debt issued in domestic and international markets. In domestic
markets, issuers predominantly issue debt in their domestic currency. Although international-market debt
also is increasingly denominated in the issuer’s domestic currency (see Gruić and Wooldridge 2012, Du
and Schreger 2016, and Burger et al. 2018), a substantial share remains in USD or other international
currencies. Because the currency composition differs by market, the market accessed by investors matters
for our estimates. Gruić and Wooldridge (2012) document a divergence between international bond issues
(from BIS IDS data) and cross-border bond holdings (from IMF CPIS data). This discrepancy suggests
that international investors sometimes buy debt in the issuer’s domestic market, while domestic investors
sometimes buy debt in international market of their own country. Burger and Warnock (2007) study this
phenomenon in the bond markets of 40 countries.
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Figure A2 – Market Access Weights for Top-Twenty Issuer Countries
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Notes. The figure shows access weights for domestic and international investors in the top 20
issuer countries by total issuance, averaged over the period 2001–2021. The upper panel shows
weights for domestic investors, who generally buy domestic debt from domestic markets. The
lower panel shows weights for international investors, who generally buy international debt from
international markets. In 5.87% of country-year observations, weights fall outside the interval
[0, 1] and are truncated to zero or one.

We compute separate access weights for domestic and international investors. For
domestic investors residing in issuer country i, access weights satisfy the following identity,

Biit = max
(

I
(IM)
it − B−iit, 0

)
+
(

Biit − max
(

I
(IM)
it − B−iit, 0

))
⇔ 1 = a

(IM)
iit + a

(DM)
iit ,

(A5)

where a
(IM)
iit ≡ max(I(IM)

it − B−iit, 0)/Biit denotes the domestic-investor access weight to
issuer i’s international market, and a

(DM)
iit = 1 − a

(IM)
iit denotes the domestic-investor access

weight to issuer i’s international market. For international investors outside issuer country
i, access weights satisfy a similar identity,

B−iit = max
(

B−iit − I
(IM)
it , 0

)
+
(

B−iit − max
(

B−iit − I
(IM)
it , 0

))
⇔ 1 = a

(DM)
−iit + a

(IM)
−iit ,

(A6)

where a
(DM)
−iit ≡ max(B−iit − I

(IM)
it , 0)/B−iit denotes the international-investor access weight

to issuer i’s domestic market, and a
(IM)
−iit = 1 − a

(DM)
−iit denotes the international-investor

access weight to issuer i’s international market.
Figure A2 illustrates access weights averaged over 2001–2021 for the top 20 issuer

countries, separately for domestic and international investors. The upper panel shows
that domestic investors generally buy domestic debt in domestic markets, although in
Great Britain, the Netherlands, and Ireland they buy significant amounts of domestic
debt issued in international markets. The lower panel shows that international investors
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generally buy international debt in international markets, although for the United States,
China, Japan, and Belgium, they purchase significant amounts of debt issued in domestic
markets. In 5.87% of country-year observations, weights fall outside the interval [0, 1] and
are truncated to zero or one.

Step Three: Issuance Weights. We compute issuance weights for 142 issuer countries
that report international-market issuance in total and by currency for USD, EUR, and the
issuer’s domestic currency in the BIS IDS data. When values are present for at least one of
these currencies, we set any remaining missing values to zero. We then define issuance in
“other” currencies (neither USD, EUR, nor the issuer’s domestic currency) as the remainder
after subtracting these three currency totals from the overall total international-market
issuance.7

Issuance weights for issuer-country i satisfy the following identity,

I
(IM)
it = I

(IM)
iit + I

(IM)
iUSDt + I

(IM)
iEURt + I

(IM)
iOTH t

⇔ 1 = v
(IM)
iit + v

(IM)
iUSDt + v

(IM)
iEURt + v

(IM)
iOTH t ,

(A7)

where I
(IM)
it denotes total international-market issuance, I

(IM)
ijt denotes issuance in currency

j. We define the issuance weight for issuer country i and issuance currency j as v
(IM)
ijt ≡

I
(IM)
ijt /I

(IM)
it . In particular, I

(IM)
iit and v

(IM)
iit denote the issuance amount and weight for

issuer country i’s international-market issuance in its domestic currency. For domestic-
market issuance, we assume that all debt is issued in the issuer’s domestic currency, so
that v

(DM)
iit ≡ 1.8

Step Four: Portfolio Weights. We compute portfolio weights for investor-country debt
holdings by combining holding weights with issuer weights and access weights. Portfolio
weights allow us to decompose each investor country’s total holdings into holdings by issuer
country and issuance currency. These weights play an important role in the calculation of
portfolio returns on investor country debt holdings in section A.3.

We compute separate portfolio weights for domestic and international debt holdings.

7A large share of country-year observations (72.15%) have missing values for USD, EUR, or domestic
currency issuance in the IDS data. However, after setting these missing values to zero, the average share
of international market issuance in the other-currency category remains low at 6.23%, compared with
8.64% for observations with no missing values. This suggests that the zero-fill assumption does not
artificially inflate the other-currency category.

8This assumption appears reasonable for most countries. Gruić and Wooldridge (2012) observe
that “bonds issued in the local market are typically issued in local currency under local law,” but note
international financial centers and dollarised or euroised economies as possible exceptions.
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For domestic debt holdings, portfolio weights are given by

wiikt ≡


biita

(IM)
iit v

(IM)
ikt , i ̸= k ,

biit

(
a

(IM)
iit v

(IM)
iit + a

(DM)
iit

)
, i = k ,

(A8)

where wiikt denotes the portfolio weight for investor country i’s holdings of domestic debt
issued in currency k. For international debt holdings, portfolio weights are given by

wijkt ≡


bijta

(IM)
−jjt v

(IM)
jkt , i ̸= j ̸= k ,

bijt

(
a

(IM)
−jjt v

(IM)
jjt + a

(DM)
−jjt

)
, i ̸= j = k ,

(A9)

where wijkt denotes the portfolio weight for investor country i’s holdings of debt issued
by country j in currency k, where i ̸= j. For country-year observations where we lack
IDS data and cannot compute access or issuance weights, we use the global average of
non-missing access and issuance weights to compute portfolio weights.9

Step Five: Biproportional Fitting. Using the portfolio weights from step four, we
can derive total international debt holdings by currency for each investor country. For a
subset of 66 countries holding 80.20% of global debt in an average year, we can compare
this derived total with a CPIS-reported total, and thereby obtain an indirect measure of
accuracy for the underlying portfolio weights. To derive total international debt holdings
by currency, we simply multiply total international debt holdings by portfolio weights and
aggregate over issuers.

The upper panel of Figure A3 shows the discrepancy between our derived totals and
the CPIS-reported totals by currency. With accurate portfolio weights, observations would
fall on the 45-degree line. Instead, our portfolio weights overestimate international debt
holdings in EUR and USD when the true values are low and underestimate when the
true values are high. The opposite is true of CHF, GBP, and JPY, but these currencies
represent a much smaller fraction of international debt.

To address this issue, we adjust initial portfolio weights using a biproportional fitting
algorithm. We introduce the following notation. Let Bijkt denote country i’s holding of
debt issued by country j in currency k, computed as a portfolio weight multiplied by
country i’s total holdings, and let Bij•t and Bi•kt denote total debt holdings by issuer and

9Many of the smallest issuer countries lack IDS data. While these countries are numerous (causing
42.29% of portfolio weights to be computed with global averages), the debt they issue accounts for a
negligible 0.29% of global holdings in an average year.
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by currency, respectively. That is, let

Bijkt = wijktBit , Bij•t =
∑

k

Bijkt , and Bi•kt =
∑

j

Bijkt . (A10)

Note that Bij•t has the same meaning as Bijt used elsewhere; we adopt the “dot” notation
here to avoid confusion with Bi•kt. Finally, let B†

i•kt denote CPIS-reported (as opposed to
derived) total holdings by currency.

For each investor–year combination, we arrange initial estimates of holdings by issuer
and currency into a matrix, with issuers j in rows and currencies k in columns. We
iteratively adjust rows and columns to obtain a set of holdings B†

ijkt such that

Bij•t =
∑

k

B†
ijkt and B†

i•kt =
∑

j

B†
ijkt ∀j, k . (A11)

The row target Bij•t ensures that the issuer-level totals remain unchanged from our
estimates in Section A.2.1, while the column target B†

i•kt forces the currency composition
to align with the CPIS-reported values.

At iteration n, we first scale each row so that its sum equals the corresponding row
target Bij•t. Specifically, for issuer (row) j, we update

B
(n+ 1

2)
ijkt = B

(n)
ijkt

Bij•t∑
k B

(n)
ijkt

, ∀ k . (A12)

Next, we scale each column so that its sum equals the corresponding column target B†
i•kt.

Specifically, for currency (column) k, we update

B
(n+1)
ijkt = B

(n+ 1
2)

ijkt

B†
i•kt∑

j B
(n+ 1

2)
ijkt

, ∀ j . (A13)

These steps are repeated until the maximum deviation between the current row and
column sums and their respective targets falls below a given tolerance. If convergence is
not achieved within a maximum number of iterations, we apply a final re-scaling to enforce
the row constraints. The final values B†

ijkt are then used to update portfolio weights wijkt.
Convergence often fails because our initial estimates Bijkt are derived from IDS data

covering USD, EUR, and domestic currency, while our currency targets are derived from
CPIS data covering USD, EUR, JPY, GBP, and CHF. In the IDS data, we construct a
residual “other” category that includes JPY, GBP, and CHF when these are non-domestic
currencies. As a result, the JPY, GBP, and CHF columns are sparsely populated, which
prevents convergence to the CPIS-reported targets in these currencies. However, these
currencies account for only 11.22% of total international debt holdings, and the algorithm
is effective for USD and EUR. The lower panel of Figure A3 illustrates this effectiveness,

11



Figure A3 – Biproportional Fitting of Portfolio Weights to Currency Weights
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Notes. The figure shows scatter plots of estimated and CPIS-reported currency weights for
CHF, EUR, GBP, JPY, and USD from 2001 to 2021 before and after the biproportional fitting
described in Section A.2.2, step five. Germany, Japan, and the United States are shown in black,
and all other countries are shown in gray. The top row shows unfitted estimates, and the bottom
row shows fitted estimates. Each plot includes a 45-degree reference line. After fitting, estimates
for USD and EUR align closely with reported values. Estimates for GBP, CHF, and JPY remain
less well aligned, but these currencies account for only 11.22% of international debt holdings.

with fitted values clustering around the 45-degree line for USD and EUR.

A.3 Domestic Currency Bias and Portfolio Returns

Table 1 reports average estimates of domestic currency bias and portfolio returns on debt
holdings for Germany, Japan, and the United States as one group, and for 181 rest-of-world
countries as another group. On average, Germany, Japan, and the United States exhibit
lower portfolio returns and a stronger domestic-currency bias than other countries. In
this appendix section, we describe the data and methodology used to estimate domestic
currency bias and portfolio returns for country-level debt holdings.

Domestic Currency Bias. We compute domestic currency bias using the debt holdings
and portfolio weights estimated in Section A.2. Following Fidora et al. (2007), we define

DCBit = 100
(
w∗

−it − w−it

)
/w∗

−it , with

w−it =
∑

j

∑
k ̸=i

wijkt and w∗
−it =

∑
j

∑
k ̸=i

wijktBit

/∑
i

Bit ,
(A14)

where DCBit denotes domestic currency bias for country i, w−it denotes the share of
international-currency debt in i’s debt holdings, and w∗

−it denotes the share of international-
currency debt in global debt holdings (with “international” defined relative to country i).
Domestic currency bias is bounded above by 100 and unbounded below. It is negative
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in only 2.38% of country-year observations, indicating that most countries overweight
domestic currency in their debt holdings.

Portfolio Returns. We compute nominal portfolio returns as a weighted average of
issuer-country nominal interest rates adjusted for currency returns, taken over all positions
in an investor country’s debt holdings. Real portfolio returns equal nominal portfolio
returns adjusted for the investor country’s domestic rate of CPI inflation. We obtain
interest rates from the Organization for Economic Cooperation and Development (OECD)
Main Economic Indicators (MEI) database and IMF International Financial Statistics
(IFS) database. Exchange rates and rates of CPI inflation are also from IFS.

Short-term interest rates serve as indicative interest rates for our portfolio return
calculations.10 For each issuer country, we use OECD MEI short-term interest rates where
available, and IMF IFS treasury bill rates where MEI rates are unavailable.11 These
two sources cover 2 069 country-year observations. For an additional 1 032 country-year
observations, these sources are unavailable but IFS deposit rates are available. In these
cases, we use a fitted model to predict short-term interest rates from deposit rates,

Ri
Bit = α + βDRi

Dit + β′
FEFE it + ϵt , (A15)

where Ri
Bit and Ri

Dit denote gross short-term and deposit rates, respectively, with subscript
i denoting the issuer country and superscript i denoting the numéraire currency, set as the
domestic currency of the issuing country, and FE it denotes country and year fixed effects.
The regression yields an R2 = 0.82 and coefficient estimates β̂D = 0.01 and α̂ = 98.83,
both significant at the 1% level. In total, reported or predicted rates are available for 3101
country-year observations.

End-of-year nominal exchange rates from IFS are available for 3 778 country-year
observations, reported with respect to USD. With the nominal exchange rate between
currency i and USD denoted SiUSDt, we define the gross nominal currency return for an
arbitrary currency pair as

RSijt = RSiUSDt/RSjUSDt , where RSiUSDt = SiUSDt/SiUSDt−1 ∀ i . (A16)

10Our estimates cover debt of all maturities. Ideally, we would match interest rate terms to debt
maturities when computing returns, but short-term and long-term debt data are less complete in BIS and
IMF sources. For robustness, Panel A3c of Table A3 reports portfolio returns for short-term debt using
available data.

11MEI short-term rates are “based on three-month money market rates where available. Typical
standardised names are ‘money market rate’ and ‘treasury bill rate’ ” (OECD, 2025). IMF treasury bill
rates are rates “at which short-term government debt securities are issued or traded in the market,” with
details varying slightly from country to country (International Monetary Fund, 2023a,b).

13



Table A2 – Summary of Domestic Currency Bias and Portfolio Returns

Variable Summary Statistics (in %)

Count Mean SD Median IQR

Portfolio Return, Nominal 3 778 5.6 8.8 3.9 6.5
Portfolio Return, Real 3 459 0.5 7.1 0.4 5.0
Coverage Ratio 3 778 84.7 25.6 95.6 8.8
Domestic Currency Bias 3 778 62.9 29.0 73.1 42.0

Currency Return 3 778 2.3 11.8 0.0 7.8
CPI Inflation Rate 3 459 5.3 9.4 3.3 5.1

Notes. The table presents summary statistics for country-year estimates of domestic currency
bias, portfolio returns, and coverage ratios in the upper panel, and for the variables used in
the calculation of portfolio returns: treasury bill rates, currency returns, and CPI rates of
inflation in the lower panel. Statistics are computed for the period 2001–2021. The count column
counts non-missing country-year observations. Mean, standard deviation (SD), median, and
interquartile range (IQR) are presented in percentage.

We define the nominal portfolio return Ri
NPit for country i in numéraire currency i as

Ri
NPit =

∑
j

∑
k

wijktRSiktR
j
Bjt , (A17)

where we apply the domestic short-term interest rate Rj
Bjt to debt issued by j in any

currency.12 We then use domestic rates of CPI inflation for the investor country to convert
nominal portfolio returns into real portfolio returns, RP it = Ri

NPit/Πi
it.

For some debt-issuing countries and years, short-term interest rates or currency returns
are unavailable. For this reason, we compute portfolio returns for each investor country
on the fraction of portfolio holdings where data are available, re-scaling portfolio weights
by the coverage ratio, which we define as

CRit =
∑

j

∑
k

wijkt1ijk (A18)

where the indicator 1ijk equals zero when interest rates or exchange rates are missing
for investor country i, issuer country j, or currency k. The median coverage ratio in our
sample is 95.6%. Table A2 provides descriptive statistics for portfolio returns, coverage
ratios, domestic currency bias, currency returns, and rates of inflation in our sample.

12The IMF and OECD have poor coverage of interest rates on debt issued in non-domestic currency.
Empirically, interest rates on debt issued in domestic and international currencies do differ; for reference,
the ECB reports a median international-minus-domestic currency rate spread of +0.8pp (advanced
economies) and −1.6pp (emerging economies) (European Central Bank, 2014b, Section C). While these
spreads are large, they would be multiplied by small portfolio weights in our analysis, and would not
significantly impact the main empirical findings we report in Table 1. Du and Schreger (2016, 2022) study
the spread for sovereign debt in emerging markets, emphasizing currency risk, credit risk, and corporate
balance sheet mismatches as important determinants, which our simplification does not capture.
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Figure A4 – Domestic Currency Bias and Portfolio Returns
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Notes. The figure shows domestic currency bias and both nominal and real short-term debt
portfolio returns and treasury rates for 188 countries, estimated annually. Germany, Japan, and
the United States are shown in black; all other countries are shown in gray. Portfolio returns
are calculated using short-term interest rates, exchange rates, and CPI inflation rates from the
OECD and IMF, with portfolio weights estimated from IMF and BIS debt holdings and issuance
data. Domestic currency bias is defined in equation (A14). We exclude 2.38% of estimates with
negative domestic currency bias and country-year observations with interest or exchange rates
more than three standard deviations above the yearly mean.

Figure A4 presents scatter plots of portfolio returns and short-term interest rates
against domestic currency bias. The horizontal axes show domestic currency bias. In the
upper plots, the vertical axis shows portfolio returns, nominal on the left and real on
the right. In the lower plots, the vertical axis shows domestic short-term interest rates,
nominal on the left and real on the right. Germany, Japan, and the United States are
shown in black, and their observations cluster near zero on the vertical axis and near 100
on the horizontal axis. All other countries are shown in gray and exhibit more variation
in domestic currency bias, portfolio returns, and domestic short-term interest rates.

Table A3 provides three robustness checks for the result in Table 1 that Germany,
Japan, and the United States have higher domestic currency bias and lower portfolio
returns than other countries (91.37% vs. 72.96% bias; −0.27% vs. 0.73% real returns).
Panel A3a shows the pattern holds with unweighted averages (88.60% vs. 62.44% bias;
−0.05% vs. 0.55% real returns). Panel A3b shows the pattern holds when including
outliers (91.37% vs. 72.93% bias; −0.26% vs. 0.80% real returns). Panel A3c shows the
pattern holds for short-term debt only (99.52% vs. 95.29% bias; −0.68% vs. 0.14% real
returns). In all specifications, the qualitative result of higher domestic currency bias and
lower returns for Germany, Japan, and the United States remains unchanged.
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Table A3 – Domestic Currency Bias and Returns on Aggregate Debt Portfolios

(a) Weighted versus Unweighted Country Averages, Outliers Excluded, All Debt

Weighted
Average

Group
Share of

Global
Holdings

Country-Level Average (in %)

Domestic
Currency

Bias

Nominal
Portfolio

Return

Real
Portfolio

Return

Portfolio
Coverage

Ratio

DE, JP, US Yes 53.97 91.37 1.20 −0.27 97.89
All Other Yes 46.03 72.96 3.16 0.73 94.02

DE, JP, US No 53.97 88.60 1.21 −0.05 97.70
All Other No 46.03 62.44 5.71 0.55 84.47

(b) Weighted Country Averages, Outliers Excluded versus Included, All Debt

Outliers
Excluded

Group
Share of

Global
Holdings

Country-Level Weighted Average (in %)

Domestic
Currency

Bias

Nominal
Portfolio

Return

Real
Portfolio

Return

Portfolio
Coverage

Ratio

DE, JP, US Yes 53.97 91.37 1.20 −0.27 97.89
All Other Yes 46.03 72.96 3.16 0.73 94.02

DE, JP, US No 53.94 91.37 1.21 −0.26 97.91
All Other No 46.06 72.93 3.34 0.80 94.15

(c) Weighted Country Averages, Outliers Excluded, All Debt versus Short-Term Debt Only

Short
Term
Only

Group
Share of

Global
Holdings

Country-Level Weighted Average (in %)

Domestic
Currency

Bias

Nominal
Portfolio

Return

Real
Portfolio

Return

Portfolio
Coverage

Ratio

DE, JP, US No 53.97 91.37 1.20 −0.27 97.89
All Other No 46.03 72.96 3.16 0.73 94.02

DE, JP, US Yes 52.27 99.52 1.20 −0.68 99.92
All Other Yes 47.73 95.29 3.15 0.14 92.06

Notes. This table presents three robustness checks for Table 1, which reports domestic currency
bias and returns on debt portfolios for Germany, Japan, and the United States versus 181 other
countries. Panel A3a compares weighted versus unweighted country averages. Panel A3b
compares results with and without outliers (interest rates and exchange rate returns exceeding
three standard deviations from annual means). Panel A3c compares all debt maturities versus
short-term debt only. All estimates use OECD and IMF data for interest rates, exchange rates,
and CPI inflation, with portfolio weights derived from IMF and BIS debt holdings and issuance
data (2001–2021). Global holdings shares are averaged across years by group; other values are
averaged across countries and years, applying debt holdings as weights where indicated.

16



B Theoretical Appendix

Appendix B provides derivations and proofs for the model in Section 4. It covers parameter
restrictions (B.1), real and nominal budget constraint (B.2), utility maximization (B.3), the
non-stochastic steady state (B.4), first-order Taylor expansions of equilibrium conditions
(B.5), model aggregability (B.6), the aggregate non-portfolio problem (B.7) and portfolio
problem (B.8), and the agent non-portfolio problem (B.9) and portfolio problem (B.10).

B.1 Parameter Restrictions

In this section, we collect our assumptions on parameter restrictions for easier reference
throughout the appendix.

Assumption 1 (Preference Parameters). The preference parameters unrelated to risk
aversion satisfy

θ ∈ [0, ε) , β ∈ (0.5, 1) , and αii ∈ (0.5, 1) , (B1)

where αii + αij = 1 so that domestic bias in consumption ϕ = αii − αij lies in (0, 1).

These restrictions ensure that individual preferences yield a well-defined steady state
and support the emergence of domestic portfolio bias in the model. Agents favor con-
sumption of the domestic good when αii ∈ (0.5, 1), which strengthens the incentive to
hold domestic bonds and helps to produce domestic bias in aggregate portfolio holdings.

Assumption 2 (Distribution of Risk Aversion). We assume risk aversion ρ lies in the
interval (0, ρm], and that the parameters of the cross-sectional distribution of risk aversion
satisfy

κ > 1 and ρm > (κ2 + κ)/(κ2 − 1) , (B2)

ensuring that the distribution has finite mean and variance, and that aggregate risk aversion
is sufficiently high (ρ̄ > ω).

Sufficiently high risk aversion is needed for Propositions 8, 9, and 10 establishing
domestic portfolio bias in aggregate, negative expected cross-county differenced returns,
and the existence of carry traders in low interest-rate economies.

Assumption 3 (Endowments and Money Supplies). The logarithmic deviations of en-
dowments and money supplies from their non-stochastic steady-state values have zero
means, positive and finite variances and covariances, and follow independent, identically
distributed processes over time. With Ẑt ≡ [Ŷit, Ŷjt, M̂ i

it, M̂ j
jt]′, i ̸= j, we assume

Et−1
[
ẐtẐ

′
t

]
=


σ2

Y σY Y σY M σ∗
Y M

σY Y σ2
Y σ∗

Y M σY M

σY M σ∗
Y M σ2

M σMM

σ∗
Y M σY M σMM σ2

M

 , (B3)
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where σY M > σ∗
Y M , σ2

Y > σY Y , and σ2
M > σMM , ensuring that domestic covariances exceed

cross-country covariances and that neither endowment shocks nor money supplies are
perfectly correlated across countries.

Assumption 3, which is stated verbally in section 4.1, preserves cross-country symmetry,
and helps to produce low expected returns on portfolios with domestic bias. However, our
results also hold under less restrictive assumptions. Specifically, all propositions, including
Propositions 8, 9, and 10, hold if log endowments and money supplies are imperfectly
correlated across countries and

Et

[
Ŷi−jt+1Ŷi+jt+1

]
≥ 0 , Et

[
M̂ i−j

i−jt+1Ŷi−jt+1
]

≥ 0 ,

and Et

[
M̂ i−j

i−jt+1Ŷi+jt+1
]

≥ 0 , i ̸= j .

Though not our focus, the less-restrictive conditions do admit asymmetric variance-
covariance structures that can generate persistent differences in returns across countries.

B.2 Nominal and Real Budget Constraints

In this section, we relate the nominal agent budget constraint to the real agent budget
constraint in (6), and the nominal bond return to the real bond return. Nominal and
real budget constraints are mathematically equivalent and lead to identical first-order
conditions.

Substituting the real return and real portfolio holdings into the agent’s real budget
constraint in (6) using the definitions in (8), we obtain

P i
it

Aiit(ρ)P i
Bit

P i
it

+ P i
it

Aijt(ρ)P i
Bjt

P i
it

+ P i
itCit(ρ)

= P i
it

Siit/P i
it

P i
Bit−1/P i

it−1

Aiit−1(ρ)P i
Bit−1

P i
it−1

+P i
it

Sijt/P i
it

P i
Bjt−1/P i

it−1

Aijt−1(ρ)P i
Bjt−1

P i
it−1

+P i
CitYit(ρ) , i ̸= j ,

which simplifies to the agent’s nominal budget constraint,

Aiit(ρ)P i
Bit + Aijt(ρ)P i

Bjt + P i
itCit(ρ) = Aiit−1(ρ) + SijtAijt−1(ρ) + P i

CitYit(ρ) , i ̸= j .

The agent’s Euler equation in (28) would remain unchanged if we were to derive it from
the nominal instead of the real budget constraint, maximizing with respect bond quantities
rather than real values of bond holdings.

The Euler equations in (28) can be written in terms of nominal instead of real returns
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using the following expression,

Rj
it =

Sjit/P j
jt

P j
Bit−1/P j

jt−1

=
Sjit/P j

Bit−1

P j
jt/P j

jt−1
= Rj

Bit/Πj
it ,

(B4)

where Rj
Bit denotes the gross nominal return and Πj

it denotes the gross rate of inflation.
A version of the Fisher equation obtains as a first-order Taylor expansion of (B4),

R̂j
Bit = R̂j

it + Π̂j
t + O(ϵ2) . (B5)

B.3 Utility Maximization

For the first-stage utility maximization problem, agent ρ in country i solves

max L(1)
it (ρ) =

∞∑
s=t

βs−t Et

 1
1 − ρ

(
Cis(ρ)
Ci(ρ)

)1−ρ

+ θ

1 − ρ

eW i
is(ρ)

eW i
i (ρ)

1−ρ


+
∞∑

s=t

βs−t Et

[
µ

(1)
is (ρ)

{
Ri

isB
i
iis−1(ρ) + Ri

jsB
i
ijs−1(ρ) + W i

is(ρ)
}]

−
∞∑

s=t

βs−t Et

[
µ

(1)
is (ρ)

{
Bi

iis(ρ) + Bi
ijs(ρ) + Cis(ρ)

}]
, i ̸= j

(B6)

by choice of
{
Cs(ρ), Bi

iis(ρ), Bi
ijs(ρ)

}
for i ̸= j and for s ≥ t, where L(1)

it (ρ) denotes the
agent’s Lagrangian for the first-stage problem and µ

(1)
it (ρ) denotes the Lagrangian multiplier

on the agent’s budget constraint. First-order conditions with respect to consumption and
real bond holdings are given by

µ
(1)
it (ρ) =

(
Cit(ρ)
Ci(ρ)

)−ρ 1
Ci(ρ) and

µ
(1)
it (ρ) = θ

eW i
it(ρ)

eW i
i (ρ)

−ρ

+ β Et

[
µ

(1)
it+1(ρ)Ri

jt+1

]
.

(B7)

Combining the first-order conditions in (B7) yields the agent Euler equations in (16).
For the second-stage utility maximization problem, agent ρ in country i solves

max L(2)
it (ρ) = γCiit(ρ)αiiCijt(ρ)αij

+ µ
(2)
it (ρ)

(
P j

itCit(ρ) − P i
CitCiit(ρ) − P i

CjtCijt(ρ)
)

, i ̸= j
(B8)

by choice of Ciit(ρ) and Cijt(ρ) for i ̸= j, where L(2)
it (ρ) denotes the agent’s Lagrangian

for the second-stage problem and µ
(2)
it (ρ) denotes the Lagrangian multiplier on the agent’s
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expenditure constraint in (11). First-order conditions with respect to the domestic and
international consumption goods are given by

µ
(2)
it (ρ)P i

Cit = γαii

(
Cijt(ρ)
Ciit(ρ)

)αij

and µ
(2)
it (ρ)P i

Cjt = γαij

(
Ciit(ρ)
Cijt(ρ)

)αii

, i ̸= j . (B9)

Combining (B9) with the expenditure constraint in (11) yields the goods demands in (17).
Combining (B9) with the definition of the consumption basket in (10) yields the price
index in (18).

B.4 The Non-Stochastic Steady State

In this section, we prove Propositions 1 and 2 characterizing the non-stochastic steady-state
equilibrium of the model.

B.4.1 Proof of Proposition 1

Proposition 1 characterizes the non-portfolio non-stochastic steady state. We begin by
deriving the steady-state price indices, goods prices, and the real exchange rate. From
the quantity equations and the equality of steady-state money supplies in (15),

M i
i = P i

CiYi = SijP
j
CjtYj = SijM

j
j = M i

j . (B10)

Using the normalization of steady-state real endowments in (9) together with the law of
one price in (18), it follows that common-currency prices for the domestic and international
goods are equal,

P i
Ci = P i

Cj , (B11)

and using the price indices in (18) and the common-currency equality of goods prices, it
follows that price indices and goods prices are equal,

P j
i = P j

Ci . (B12)

Using the equality of prices derived above together with the definition of the real exchange
rate in (14) evaluated at the steady state,

Qij =
SijP

j
j

P i
i

=
P i

j

P i
i

=
P i

Cj

P i
Ci

=
P i

Cj

P i
Cj

= 1 . (B13)

We now derive steady-state consumption. The left-hand side of the steady-state Euler
equation in (19) is independent of j, so real returns on domestic and international nominal
bonds are equal,

Ri
i = Rj

i , (B14)
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and the right-hand side is independent of ρ, so agent and aggregate consumption baskets
are equal (given that the measure of agents equals one in each country),

Ci(ρ) = Ci . (B15)

From the goods demands in (17), together with steady-state prices in (21),

Cij(ρ) = Cij = αijCi , (B16)

and together with goods market clearing in (12), the equality of agent and aggregate
endowments in (9), and the parameter restrictions in (1),

Ci(ρ) = Ci = Yi = Yi(ρ) = 1 . (B17)

Since Ci(ρ) = 1, it follows from (19) that

Rj
i = 1 − θ

β
= R . (B18)

We now derive steady-state real wealth. From the budget constraints in (6), using the
definition of real wealth in (7) and the equality of steady-state real returns in (22),

W i
i (ρ) + Ci(ρ) = RW i

i (ρ) + Yi(ρ) . (B19)

Using the normalized values of steady-state consumption and endowments, and rearranging,
the budget constraint becomes

W i
i (ρ)(1 − R) = 0 . (B20)

Given that the measure of agents equals one in each country, it follows from the budget
constraint that

W i
i (ρ) = W i

i = W j
j = W j

j (ρ) . (B21)

From the bond market clearing conditions in (12), summing across bonds,

Bi
ii + Bi

ji + Bi
jj + Bi

ij = 0 ⇔ W i
i + W i

j = 0 , i ̸= j , (B22)

using the definition of real wealth in (7). From the definitions of real wealth in (7) and
real bond holdings in (8), together with the steady-state real exchange rate in (21),

W i
j = QijW

j
j = W j

j , (B23)
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Hence, we have
W i

i = W j
j , W i

i + W i
j = 0 , and W i

j = W j
j , (B24)

and therefore
W j

i (ρ) = W j
i = 0 . (B25)

B.4.2 Proof of Proposition 2

Proposition 2 characterizes the portfolio non-stochastic steady state. The characterization
is limited, and derives from the solution for steady-state agent and aggregate real wealth
and from market clearing. From steady-state real wealth in (22), using the definition of
real wealth in (7), we have

Bi
ii(ρ) = −Bi

ij(ρ) and Bi
ii = −Bi

ij . (B26)

Combining these results with market clearing in (12), we have

Bi
ii = Bi

jj . (B27)

We derive more complete characterizations of steady-state agent and aggregate portfolio
holdings (to order-zero approximations) in Proposition 10.

B.5 First-Order Taylor Expansions

Several Taylor expansions already appear in the body of the paper; these include agent
Euler equations in (28), agent budget constraints in (30), agent goods demands in (31),
and market clearing conditions for goods and bonds in (32). For the remaining equilibrium
conditions, Taylor expansions are given below:

Agent Real Wealth: Ŵ j
it(ρ) = B̂j

iit(ρ) + B̂j
ijt(ρ) + O(ϵ2) , i ̸= j ,

Real Bond Returns: R̂j
it =

(
Ŝjit − P̂ j

Bit−1

)
−
(
P̂ j

it − P̂ j
it−1

)
+ O(ϵ2) ,

Price Indices: P̂ k
it = αiiP̂

k
Cit + αijP̂

k
Cjt + O(ϵ2) , i ̸= j ,

Consumption LoP: P̂ i
Cit = Ŝijt + P̂ j

Cit + O(ϵ2) ,

Bond LoP: P̂ i
Bit = Ŝijt + P̂ j

Bit + O(ϵ2) ,

Real Exchange Rate: Q̂ijt = Ŝijt + P̂ j
jt − P̂ i

it + O(ϵ2) , and

Quantity Equations: M̂ j
it = Ŷit + P̂ j

it + O(ϵ2) .

(B28)

B.6 Model Aggregability

In this section, we derive expressions for the aggregate coefficient of relative risk aversion
and the aggregate intertemporal elasticity of substitution, and prove Propositions 3 and 4.
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B.6.1 Aggregating Preference Parameters

Given the CRRA consumption utility in (4), heterogeneity can be defined equivalently in
terms of either the coefficient of relative risk aversion or the intertemporal elasticity of
substitution with respect to consumption. Using the distribution in (2), the aggregate
coefficient of relative risk aversion and intertemporal elasticity of substitution are given by

ρ̄ =
∫

R
ρf(ρ) dρ = κρm

κ + 1 and σ̄ =
∫

R
σ(ρ)f(ρ) dρ = κρm

κ − 1 , (B29)

where we have used equation (5) for σ(ρ).

B.6.2 Proof of Proposition 3

Proposition 3 introduces the aggregation wedge ω. Using the expressions for ρ̄ and σ̄ in
(B29) and the definition of ω in (27), we have

σ̄ = ω

ρ̄
⇔ κρm

κ − 1 = ω
κ + 1
κρm

⇔ ω = κ2

κ2 − 1 .

By inspection, the wedge is greater than one and decreasing in κ for κ > 1.

B.6.3 Proof of Proposition 4

Proposition 4 states the first-order approximate agent and aggregate Euler equations. We
begin with the agent Euler equation. Combining fist-order conditions in (B7), we obtain

(
Cit(ρ)
Ci(ρ)

)−ρ 1
Ci(ρ) = θ

eW i
it(ρ)

eW i
i (ρ)

−ρ

+ β Et

(Cit+1(ρ)
Ci(ρ)

)−ρ 1
Ci(ρ)Ri

jt+1

 .

A standard first-order Taylor expansion of this expression around the non-stochastic
steady state then yields (28).

The expression in (28) aggregates straightforwardly. The coefficient of relative risk
aversion is the only source heterogeneity in the expression, and it multiplies an aggregate
variable. Integrating (28) over agents,

∫
R

Ĉit(ρ)f(ρ) dρ = θ
∫

R
Ŵ i

it(ρ)f(ρ) dρ

+ βR Et

[∫
R

Ĉit+1(ρ)f(ρ) dρ −
∫

R

1
ρ

f(ρ) dρR̂i
jt+1

]
+ O(ϵ2) ,

(B30)

and noting that (25) implies

Ĉit =
∫

R
Ĉit(ρ)f(ρ) dρ + O(ϵ2) and Ŵ j

it =
∫

R
Ŵ j

it(ρ)f(ρ) dρ + O(ϵ2) ,
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we obtain (29) from (B30) directly. Expressions in (5) and (26) are used for the coefficient
of relative risk aversion.

B.7 The Aggregate Non-Portfolio Problem

In the aggregate non-portfolio problem we solve for aggregate consumption and real wealth
and for the real exchange rate in terms of lagged state variables, exogenous variables,
and parameters. We first derive cross-country differenced solutions, and then use market
clearing conditions to derive country-specific solutions.

B.7.1 The Aggregate Non-Portfolio System

To derive the cross-country differenced aggregate non-portfolio system in (36), we combine
the market clearing condition in (32) with the aggregate budget constraints in (30)
differenced across countries and aggregate Euler equations in (29) differenced across
countries. Using the market clearing condition in (32) to eliminate the real exchange rate
from the cross-country differenced aggregate budget constraint in (34), we obtain

Ŵ i
i−jt = RŴ i

i−jt−1 − 1 − ϕ

1 − ϕ2 Ĉi−jt + ϕ
1 − ϕ

1 − ϕ2 Ŷi−jt + RV̂ i
i−jt + O(ϵ2) . (B31)

Similarly, using the market clearing condition in (32) to eliminate the real exchange rate
from the cross-country differenced aggregate Euler equation in (34), we obtain

θŴ i
i−jt + βR

(
1 + σ̄

ϕ2

1 − ϕ2

)
Et

[
Ĉi−jt+1

]
=
(

1 + σ̄βR
ϕ2

1 − ϕ2

)
Ĉi−jt + σ̄βR

ϕ

1 − ϕ2 Ŷi−jt + O(ϵ2) .

(B32)

These two equations, (B31) and (B32), constitute the cross-country differenced aggregate
system. The system depends on three endogenous variables: cross-country differenced
aggregate consumption Ĉi−jt, cross-country differenced aggregate real wealth Ŵ i

i−jt, and
the cross-country differenced aggregate portfolio valuation effect V̂ i

i−jt. We solve the system
initially for Ĉi−jt and Ŵ i

i−jt in terms of V̂ i
i−jt, describing these solutions as intermediate

solutions. Solving for V̂ i
i−jt requires second-order Taylor expansions of Euler equations

and a solution for Bi
ii−ji, which we derive in B.8.

We write the cross-country differenced aggregate system in (B31) and (B32) as

E (−)

0 Et

[
Ẑi−jt+1

]
= E (−)

1 Ẑi−jt + E (−)

2 Ŷi−jt + E (−)

3 V̂ i
i−jt + O(ϵ2) , (B33)
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where the coefficient matrices are given by

E (−)

0 =

1 0
θ βR

(
1 + σ̄ ϕ2

1−ϕ2

)
 , E (−)

1 =

R − 1−ϕ
1−ϕ2

0 1 + σ̄βR ϕ2

1−ϕ2

 ,

E (−)

2 =

 ϕ 1−ϕ
1−ϕ2

−σ̄βR ϕ
1−ϕ2

 , and E (−)

3 =
R

0

 .

(B34)

The matrix E (−)

0 is invertible if its determinant is non-zero. Therefore, we require that

det
(
E (−)

0

)
= βR

(
1 + σ̄

ϕ2

1 − ϕ2

)
̸= 0 , (B35)

which is always satisfied under Assumptions 1 and 2. Inverting E (−)

0 , we rewrite the
aggregate system in (B33) to obtain (36), with partial elasticity matrices given by

E (−)

ZZ =
E (−)

W W E (−)
W C

E (−)
CW E (−)

CC

 =

 R − 1−ϕ
1−ϕ2

− θ
β

1−ϕ2

1−(1−σ̄)ϕ2
1

βR
1+θ(1−ϕ)−(1−σ̄βR)ϕ2

1−(1−σ̄)ϕ2

 ,

E (−)

ZY =
E (−)

W Y

E (−)
CY

 =

 ϕ 1−ϕ
1−ϕ2

− ϕ
1−(1−σ̄)ϕ2

(
σ̄ + θ(1−ϕ)

βR

)
 , and (B36)

E (−)

ZV =
E (−)

W V

E (−)
CV

 =

 R

− θ
β

1−ϕ2

1−(1−σ̄)ϕ2

 .

Before solving the aggregate cross-country differenced system in (36), we establish the
conditions for a unique and stationary rational expectations solution following Blanchard
and Kahn (1980). The eigendecomposition of E (−)

ZZ is given by

E (−)

ZZ = V (−)

ZZΛ(−)

ZZV (−)−1

ZZ (B37)

where V (−)

ZZ is a matrix of eigenvectors and Λ(−)
ZZ a diagonal matrix of eigenvalues,

V (−)

ZZ =
ν (−)

W W ν (−)
W C

ν (−)
CW ν (−)

CC

 =
 E (−)

W C E (−)
W C

λ(−)
ZW − E (−)

W W λ(−)
ZC − E (−)

W W

 , and

Λ(−)

ZZ =
λ(−)

ZW 0
0 λ(−)

ZC

 ,

(B38)
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where

λ
(−)

ZW = 1
2
(
E (−)

W W + E (−)

CC

)
+
√

1
4
(
E (−)

W W − E (−)
CC

)2
+ E (−)

W CE (−)
CW , and (B39)

λ
(−)

ZC = 1
2
(
E (−)

W W + E (−)

CC

)
−
√

1
4
(
E (−)

W W − E (−)
CC

)2
+ E (−)

W CE (−)
CW . (B40)

B.7.2 Proof of Proposition 5

Proposition 5 states that λ(−)
ZW and λ(−)

ZC are distinct and real-valued if θ ≥ 0. To prove
this statement, it suffices to show that the discriminant in (B39) and (B40) is positive.
The discriminant ∆ is given by

∆ = 1
4
(
E (−)

W W − E (−)

CC

)2
+ E (−)

W CE (−)

CW . (B41)

Suppose θ > 0. The squared term is always positive or zero, so we need to show that
the second term is positive,

E (−)

W CE (−)

CW > 0 ⇔ θ

β

1 − ϕ

1 − (1 − σ̄)ϕ2 > 0 , (B42)

where we have used the partial elasticities in (B36). Under Assumptions 1 and 2, the
inequality in (B42) is always satisfied.

Suppose θ = 0. The second term is zero, E (−)
W CE (−)

CW = 0, but the squared term is
positive, since E (−)

W W

∣∣∣
θ=0

− E (−)
CC

∣∣∣
θ=0

= 1/β − 1 > 0, so the discriminant ∆ is again positive.
Thus, θ ≥ 0 is sufficient for distinct and real-valued eigenvalues.

The case where θ = 0 serves as a helpful benchmark for proving the remaining
statements in Proposition 5. Table B1 reports the partial elasticities in (36) and their
derivatives with respect to θ, evaluated at θ = 0.

Proposition 5 states that λ(−)
ZW evaluated at θ = 0 is strictly greater than one and λ(−)

ZC

evaluated at θ = 0 is exactly one. Using Table B1 to evaluate (B39) at θ = 0,

λ
(−)

ZW

∣∣∣
θ=0

= 1
2

(
1
β

+ 1
)

+ 1
2

∣∣∣∣∣ 1β − 1
∣∣∣∣∣ = 1

β
= E (−)

W W

∣∣∣
θ=0

> 1 , (B43)

and (B40) at θ = 0,

λ
(−)

ZC

∣∣∣
θ=0

= 1
2

(
1
β

+ 1
)

− 1
2

∣∣∣∣∣ 1β − 1
∣∣∣∣∣ = E (−)

CC

∣∣∣
θ=0

= 1 . (B44)

Proposition 5 also states that the partial derivative of λ(−)
ZW with respect to θ evaluated

at θ = 0 is positive, and the partial derivative of λ(−)
ZC with respect to θ evaluated at θ = 0
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Table B1 – Aggregate Partial Elasticities and Their Derivatives at θ = 0

Partial
Elasticity

Value of Partial Elasticity Derivative with Respect to θ

Evaluated at θ = 0 Evaluated at θ = 0

Expression Sign Expression Sign

E (−)
W W

1
β + − 1

β −

E (−)
W C − 1−ϕ

1−ϕ2 − 0 +

E (−)
CW 0 · − 1

β
1−ϕ2

1−(1−σ̄)ϕ2 −

E (−)
CC 1 + 2−ϕ−ϕ2

1−(1−σ̄)ϕ2 +

E (−)
W Y ϕ 1−ϕ

1−ϕ2 + 0 ·

E (−)
CY − ϕσ̄

1−(1−σ̄)ϕ2 − − ϕ(1−ϕ)
1−(1−σ̄)ϕ2 −

E (−)
W V

1
β + − 1

β −

E (−)
CV 0 · − 1

β
1−ϕ2

1−(1−σ̄)ϕ2 −

Notes. Column one lists the partial elasticities that appear in the cross-country differenced
aggregate system (36). Columns two and four, respectively, give expressions for the partial
elasticities and their derivatives with respect to θ, both evaluated at θ = 0. Columns three and
five, respectively, give the signs of the partial elasticities and their derivatives, both evaluated at
θ = 0. Signs are established under Assumptions 1 and 2.

is negative. To establish this result, we differentiate the eigenvalues with respect to θ,

∂λ(−)
±

∂θ
= 1

2

∂E (−)
ZW

∂θ
+

∂E (−)
ZC

∂θ

± 1
2

[
1
4
(
E (−)

W W − E (−)

CC

)2
+ E (−)

W CE (−)

CW

]− 1
2

×

1
2
(
E (−)

W W − E (−)

CC

)∂E (−)
W W

∂θ
−

∂E (−)
CC

∂θ

+
∂E (−)

W C

∂θ
E (−)

CW + E (−)

W C

∂E (−)
CW

∂θ

 ,

(B45)

where the “+” case corresponds to eigenvalue λ(−)
ZW and the “−” case corresponds to

eigenvalue λ(−)
ZC . Using Table B1, we then evaluate (B45) at θ = 0,

∂λ(−)
ZW

∂θ

∣∣∣∣∣∣
θ=0

=
∂E (−)

W W

∂θ

∣∣∣∣∣∣
θ=0

+ β

1 − β
E (−)

W C

∣∣∣
θ=0

∂E (−)
CW

∂θ

∣∣∣∣∣∣
θ=0

= 1
1 − β

1 − ϕ

1 − (1 − σ̄)ϕ2 − 1
β

,

(B46)

and
∂λ(−)

ZC

∂θ

∣∣∣∣∣∣
θ=0

=
∂E (−)

CC

∂θ

∣∣∣∣∣∣
θ=0

− β

1 − β
E (−)

W C

∣∣∣
θ=0

∂E (−)
CW

∂θ

∣∣∣∣∣∣
θ=0

= 1
1 − (1 − σ̄)ϕ2

[
2 − ϕ − ϕ2 − 1 − ϕ

1 − β

]
.

(B47)
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The right-hand side of (B46) is positive if

β >
1 − (1 − σ̄)ϕ2

2 − (1 − σ̄)ϕ2 − ϕ
, (B48)

and the right-hand side of (B47) is negative if

β >
1 − ϕ2

2 − ϕ2 − ϕ
. (B49)

The inequality in (B49) is implied by the inequality in (B48). Hence, (B48) provides a
sufficient condition for the derivatives of λ(−)

ZW and λ(−)
ZC with respect to θ to be positive

and negative, respectively, when evaluated at θ = 0.
Assumptions 1 and 2 ensure that (B48) is satisfied. By continuity, a small positive

value for θ then pushes the eigenvalues λ(−)
ZC below one and λ(−)

ZW further above one, ensuring
a unique and stationary rational expectations solution to (36).

B.7.3 Intermediate Aggregate Non-Portfolio Solution

We now derive intermediate solutions for aggregate real wealth, aggregate consumption, and
the real exchange rate in terms lagged state variables, exogenous variables and parameters,
and the endogenous aggregate portfolio valuation effect. Using the eigendecomposition in
(B37), we rewrite the aggregate cross-country differenced system in (B33) as

V (−)−1

ZZ Et

[
Ẑi−jt+1

]
= Λ(−)

ZZV (−)−1

ZZ Ẑi−jt + V (−)−1

ZZ E (−)

ZY Ŷi−jt + V (−)−1

ZZ E (−)

ZV V̂ i
i−jt + O(ϵ2) ,

(B50)

and from (B50) we extract the equation associated with the unstable eigenvalue λ(−)
ZW ,

Et

[
Ẑi−jt+1

]
= λ

(−)

ZW Ẑi−jt +
[(

λ
(−)

ZC − E (−)

W W

)
E (−)

W Y − E (−)

W CE (−)

CY

]
V̂ i

i−jt

+
[(

λ
(−)

ZC − E (−)

W W

)
E (−)

W V − E (−)

W CE (−)

CV

]
Ŷi−jt + O(ϵ2) ,

(B51)

where Ẑi−jt+1 =
(
λ(−)

ZC − E (−)
W W

)
Ŵ i

i−jt − E (−)
W CĈi−jt+1.

Because λ(−)
ZW is greater than one, the left-hand side of (B51) must be zero to rule out

explosive paths. Setting the left-hand side to zero, we obtain

Ĉi−jt = η
(−)

CW Ŵ i
i−jt−1 + η

(−)

CY Ŷi−jt + η
(−)

CV V̂ i
i−jt + O(ϵ2) , (B52)

and using (B52) to eliminate Ĉi−jt from (B31), we obtain

Ŵ i
i−jt = η

(−)

W W Ŵ i
i−jt−1 + η

(−)

W Y Ŷi−jt + η
(−)

W V V̂ i
i−jt + O(ϵ2) . (B53)
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Writing the intermediate solutions in (B52) and (B53) in more compact matrix form, we
obtain (38), where the semi-partial elasticity matrices are given by

η
(−)

ZW =
η(−)

W W

η(−)
CW

 =

 λ(−)
ZC

λ(−)

ZC
−E (−)

W W

E (−)

W C

 ,

η
(−)

ZY =
η(−)

W Y

η(−)
CY

 =


(

λ(−)

ZC
−E (−)

W W

)
E (−)

W Y
−E (−)

W C
E (−)

CY

λ(−)

ZW

− ϕE (−)
W C(

λ(−)

ZC
−E (−)

W W

)
E (−)

W Y
−E (−)

W C
E (−)

CY

λ(−)

ZW
E (−)

W C

 , and (B54)

η
(−)

ZV =
η(−)

W V

η(−)
CV

 =


(

λ(−)

ZC
−E (−)

W W

)
E (−)

W V
−E (−)

W C
E (−)

CV

λ(−)

ZW

+ E (−)
W W(

λ(−)

ZC
−E (−)

W W

)
E (−)

W V
−E (−)

W C
E (−)

CV

λ(−)

ZW
E (−)

W C

 .

For the real exchange rate, we combine the market clearing condition in (32) with our
intermediate solution for cross-country differenced consumption in (B52) to obtain (42),
with semi-partial elasticities

η
(−)

QW = − ϕ2

1 − ϕ2

λ(−)
ZC − E (−)

W W

E (−)
W C

η
(−)

QY = ϕ

1 − ϕ2

1 − ϕ

(
λ(−)

ZC − E (−)
W W

)
E (−)

W Y − E (−)
W CE (−)

CY

λ(−)
ZW E (−)

W C

 , and

η
(−)

QV = − ϕ2

1 − ϕ2

(
λ(−)

ZC − E (−)
W W

)
E (−)

W V − E (−)
W CE (−)

CV

λ(−)
ZW E (−)

W C

.

(B55)

The semi-partial elasticities in (B54) and (B55) can be written in terms of model
parameters using the partial elasticities in (B36) and the eigenvalues in (B39) and (B40).

B.8 The Aggregate Portfolio Problem

In the aggregate portfolio problem we solve for cross-country differenced realized and
expected real returns on nominal bonds and cross-country differenced aggregate portfolio
holdings of nominal bonds.

To begin, we take the cross-country difference of realized real returns in (B28) to
obtain

R̂i
i−jt+1 = −Ŝjit+1 − P̂ i

Bi−jt + O(ϵ2) , (B56)
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which we combine with the first-order expansion of expected real returns in (47) to obtain

R̂i
i−jt+1 = −

(
Sijt+1 − Et

[
Sijt+1

])
+ O(ϵ2) . (B57)

Using first-order Taylor expansions of the real exchange rate, price indices, and quantity
equations in 47, the nominal exchange rate can be written as

Ŝijt = 1
ϕ

Q̂ijt + M̂ i−j
i−jt − Ŷi−jt + O(ϵ2) , (B58)

and combining with the intermediate solution for the real exchange rate in (42) and the
expression for the cross-country differenced real return in (B57), we obtain

R̂i
i−jt = η

(−)

RY Ŷi−jt + η
(−)

RMM̂ i−j
i−jt + η

(−)

RV V̂ i
i−jt + O(ϵ2) , (B59)

where the real return semi-partial elasticities are given by

η
(−)

RY = ϕ

1 − ϕ2


(
λ(−)

ZC − E (−)
W W

)
E (−)

W Y − E (−)
W CE (−)

CY

λ(−)
ZW E (−)

W C

− ϕ

 ,

η
(−)

RM = −1 , and

η
(−)

RV = ϕ

1 − ϕ2

(
λ(−)

ZC − E (−)
W W

)
E (−)

W V − E (−)
W CE (−)

CV

λ(−)
ZW E (−)

W C

.

(B60)

We substitute the portfolio valuation effect (35) to into (B59) and rearrange to obtain
the cross-country differenced real return in terms of general elasticities in (43), where the
general elasticities are given by

γ
(−)

RY =
η(−)

RY

1 − η(−)
RV Bi

ii−ji

and γ
(−)

RM =
η(−)

RM

1 − η(−)
RV Bi

ii−ji

, (B61)

and where the semi-partial elasticities η(−)
RY , η(−)

RM , and η(−)
RV can be written in terms of

model parameters using the partial elasticities in (B36), but where Bi
ii−ji remains to be

solved. For use later, we report the semi-partial elasticities from the aggregate portfolio
problem in Table B2, evaluate at θ = 0.

B.8.1 Proof of Proposition 6

The cross-country differenced aggregate portfolio valuation multiplier µ(−)
ii−ji in (44) depends

on the semi-partial elasticity η(−)
RV in (B60), and exceeds one in absolute value if

1∣∣∣1 − η(−)
RV Bi

ii−ji

∣∣∣ > 1 . (B62)
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Table B2 – Aggregate Semi-Partial Elasticities at θ = 0

Semi-Partial
Elasticity

Evaluation at θ = 0

Expression Sign

η(−)
CY (1 − β)ϕ + βϕσ̄

1−(1−σ̄)ϕ2 +

η(−)
W Y βϕ (1−ϕ)(1−σ̄)

1−(1−σ̄)ϕ2 +

η(−)
QY ϕ

(
1 + β 1−σ̄

1−(1−σ̄)ϕ2

)
+

η(−)
RY −βϕ2 1−σ̄

1−(1−σ̄)ϕ2 −

η(−)
CV

1−β
β

1−ϕ2

1−ϕ +

η(−)
W V

1−ϕ2−(1−β)(1−ϕ)
β(1−ϕ2) +

η(−)
QV −1−β

β
ϕ2

1−ϕ −

η(−)
QW −1−β

β
ϕ2

1−ϕ −

η(−)
RV

1−β
β

1−ϕ2

1−ϕ +
η(−)

RM −1 −

Notes. The table shows semi-partial elasticities from the cross-country differenced aggregate
non-portfolio and portfolio problems, evaluated at θ = 0. Column two give an expression for
each elasticity, and column three gives its sign under Assumptions 1 and 2.

From Table B2, η(−)
RV > 0 at θ = 0. Because η(−)

RV is continuous in θ in the neighborhood
of θ = 0, its sign is preserved for θ ∈ [0, ϵ).

Case one: 1 − η(−)
RV Bi

ii−ji > 0. In this case, 1 > 1 − η(−)
RV Bi

ii−ji is equivalent to 0 < Bi
ii−ji.

Hence, 0 < Bi
ii−ji < 1/η(−)

RV implies
∣∣∣µ(−)

ii−ji

∣∣∣ > 1. Case two: 1 − η(−)
RV Bi

ii−ji < 0. In this case,
1 > η(−)

RV Bi
ii−ji − 1 is equivalent to Bi

ii−ji < 2/η(−)
RV . Hence, 1

η(−)

RV

< Bi
ii−ji < 2

η(−)

RV

implies∣∣∣µ(−)
ii−ji

∣∣∣ > 1. Combining cases one and two,

0 < Bi
ii−ji <

2
η(−)

RV

⇒
∣∣∣µ(−)

ii−ji

∣∣∣ > 1 . (B63)

As an illustration, suppose θ = 0, ϕ = 0.5, and β = 0.95. In this case, 2/η(−)
RV = 38;

domestic bias in aggregate portfolio holdings amplifies the response of the cross-country
differenced real return to endowment and money supply shocks, provided that the cross-
country differenced aggregate holdings of country i’s bond are less than 38 times the size
of the steady-state economy, which is normalized to one.

In contrast, µ(−)
ii−ji lies between zero and one if

0 ≤ 1
1 − η(−)

RV Bi
ii−ji

< 1 . (B64)

Given that η(−)
RV is positive, these inequalities are satisfied for any Bi

ii−ji < 0. In other
words, any amount of international bias in aggregate portfolio holdings attenuate rather
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than amplify the response of the cross-country differenced real return to endowment and
money supply shocks.

B.8.2 Proof of Proposition 7

Second-order Taylor expansions of the agent Euler equations in (16) are given by

Ĉit(ρ) − ρ

2 Ĉit(ρ)2 − θŴ i
it(ρ) + θρ

2 Ŵ i
it(ρ)

= βR Et

[
Ĉit+1(ρ) − ρ

2 Ĉit+1(ρ)2 − 1
ρ

R̂i
jt+1 + Ĉit+1(ρ)R̂i

jt+1

]
+ O(ϵ3) .

(B65)

Differencing (B65) across bonds, i minus j, for agent ρ in country i, we obtain

Et

[
R̂i

i−jt+1

]
= ρ Et

[
Ĉit+1(ρ)R̂i

i−jt+1

]
+ O(ϵ3) . (B66)

We use this second-order approximate agent Euler equation to obtain the cross-country
differenced and cross-country summed Euler equations that appear in Proposition 7.

We begin by deriving the second-order approximate cross-country differenced agent
Euler equations in (48). Differencing (B66) across countries for agents with identical
coefficients of relative risk aversion, we obtain

Et

[
R̂i

i−jt+1 − R̂j
i−jt+1

]
= ρ Et

[
Ĉit+1(ρ)R̂i

i−jt+1 − Ĉjt+1(ρ)R̂j
i−jt+1

]
+ O(ϵ3). (B67)

The cross-country differenced real return in numéraire currency j, denoted R̂j
i−jt+1, now

appears on both sides of the cross-country differenced Euler equations in (B67), which we
convert to numéraire currency i before proceeding. To preserve the order of approximation
in (B67), we need a second-order approximate conversion for the left-hand side of (B67)
and a first-order approximate conversion for the right-hand side. Using the definition of
the real return in (8) and the definition of the real exchange rate in (14), we obtain

R̂j
i−jt+1 = R̂i

i−jt+1 + O(ϵ2) and

R̂j
i−jt+1 = R̂i

i−jt+1 − R̂i
i−jt+1

(
Q̂ijt+1 − Q̂ijt

)
+ O(ϵ3) .

(B68)

Using (B68) to convert R̂j
i−jt+1 to numéraire currency i in (B67), we obtain the second-

order approximate cross-country differenced agent Euler equation in equation (48).
We next derive the second-order approximate cross-country summed agent Euler

equations in (48). Summing (B66) across countries for agents with identical coefficients
of relative risk aversion ρ, we obtain

Et

[
R̂i

i−jt+1 + R̂j
i−jt+1

]
= ρ Et

[
Ĉit+1(ρ)R̂i

i−jt+1 + Ĉjt+1(ρ)R̂j
i−jt+1

]
+ O(ϵ3) . (B69)
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Again using (B68) to convert R̂j
i−jt+1 to numéraire currency i, we obtain the second-order

approximate cross-country summed agent Euler equation in (48).
To obtain aggregate second-order approximate cross-country differenced and summed

agent Euler equations, we exploit the fact that ρ multiplies no agent variables in (48) and
integrate with respect to ρ, leading straightforwardly to the expressions in (49).

B.8.3 Proof of Proposition 8

To prove Proposition 8 on domestic bias in aggregate portfolio holdings, we first derive
a final solution for cross-country differenced portfolio holdings, which we omitted from
Section 4.2.5.

We derive the intermediate solution in (50) by combining the aggregate cross-country
differenced portfolio valuation effect in (35), cross-country differenced aggregate consump-
tion in (38) and the real exchange rate in (41) with the cross-country differenced aggregate
Euler equations (49). This solution is intermediate because it depends on R̂i

i−jt+1.
Using the first-order approximate solution for R̂i

i−jt+1 in (42), and rearranging to
isolate Bi

ii−ji on the left-hand side, the final solution is given by,

Bi
ii−ji =

Et−1

[
ζ (−)

B1

(
Ŷi−jt

)2
+ ζ (−)

B2

(
Ŷi−jtM̂

i−j
i−jt

)]
Et−1

[
ζ (−)

B3

(
Ŷi−jt

)2
+ ζ (−)

B4

(
Ŷi−jtM̂

i−j
i−jt

)
+ ζ (−)

B5

(
M̂ i−j

i−jt

)2
] + O(ϵ) , (B70)

where the coefficients given by

ζ
(−)

B1
= η

(−)

RY

(
η

(−)

CY − σ̄η
(−)

QY

)
,

ζ
(−)

B2
= η

(−)

RM

(
η

(−)

CY − σ̄η
(−)

QY

)
,

ζ
(−)

B3
= η

(−)

RY η
(−)

RV

(
η

(−)

CY − σ̄η
(−)

QY

)
−
(
η

(−)

RY

)2(
η

(−)

CV − σ̄η
(−)

QV

)
,

ζ
(−)

B4
= η

(−)

RMη
(−)

RV

(
η

(−)

CY − σ̄η
(−)

QY

)
− 2η

(−)

RMη
(−)

RY

(
η

(−)

CV − σ̄η
(−)

QV

)
, and

ζ
(−)

B5
= −

(
η

(−)

RM

)2(
η

(−)

CV − σ̄η
(−)

RV

)
,

(B71)

and where the semi-partial elasticities that appear in the coefficients are defined in
equations (B54), (B55), and (B60). The coefficients in (B71) are continuous in θ in the
neighborhood of θ = 0, so it will suffice for the proof to establish signs for the coefficients
at θ = 0, because these signs are preserved for θ sufficiently close to zero.

To establish signs for the coefficients in (B71), we must first establish signs for the
semi-partial elasticities that appear in the coefficients. The semi-partial elasticities are
defined in (B54), (B55), and (B60), and their values evaluated at θ = 0 are given in Table
B2. Using the table, we can further establish signs of two compound terms that appear
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repeatedly in the coefficients in (B71),

(
η

(−)

CY − σ̄η
(−)

QY

)∣∣∣∣
θ=0

> 0 and
(
η

(−)

CV − σ̄η
(−)

RV

)∣∣∣∣
θ=0

> 0 , (B72)

under Assumptions 1 and 2.
Using these terms, Table B2, and (B72), we find that the coefficients in (B71) are

negative when evaluated at θ = 0:

ζ
(−)

B1

∣∣∣
θ=0

< 0 , ζ
(−)

B2

∣∣∣
θ=0

< 0 , ζ
(−)

B3

∣∣∣
θ=0

< 0

ζ
(−)

B4

∣∣∣
θ=0

< 0 , and ζ
(−)

B5

∣∣∣
θ=0

< 0 .
(B73)

Assumption 3, together with the results in (B70) and (B73), are sufficient to conclude
that Bi

ii−ji > 0. From the definition of cross-country differenced steady-state bond
holdings in (35) and the non-stochastic steady-state portfolio equilibrium in Proposition
2, it follows that Bi

ij < 0 + O(ϵ) < Bi
ii as stated in Proposition 8.

B.8.4 Proof of Proposition 9

Proposition 9 states that the cross-country differenced real return is negative. To establish
this result, we begin from the intermediate solution for expected cross-country differenced
real returns in (54). We need to establish the signs for the three terms under expectation
operators on the right-hand side of this expression, as well as for the coefficients on these
terms.

We begin with the coefficients. The coefficient ωρ̄/2 is positive by inspection, under
Assumption 2. The signs of the remaining two coefficients are determined by the signs of
the semi-partial elasticities η(−)

QY and η(−)
QV . From Table B2, η(−)

QY and η(−)
QV are positive and

negative at θ = 0, respectively, under Assumptions 1 and 2. By continuity, these signs are
preserved for small positive values of θ.

It remains to establish the signs of the three terms under expectation operators on the
right-hand side of (54). The first term is Et

[
R̂i

i−jt+1Ŷi+jt+1
]
. We use the cross-country

differenced realized return in (43) to obtain

Et

[
R̂i

i−jt+1Ŷi+jt+1
]

= γ
(−)

RY Et

[
Ŷi−jt+1Ŷi+jt+1

]
+ γ

(−)

RM Et

[
M̂ i−j

i−jt+1Ŷi+jt+1
]

+ O(ϵ3) ,

Under Assumption 3, this term is negative if the general elasticities γ(−)
RY and γ(−)

RM are
negative. These general elasticities are given in (44). Their numerators η(−)

RY and η(−)
RM are

negative at θ = 0, as shown in Table B2. Their denominator 1 − η(−)
RV Bi

ii−ji is positive if

η
(−)

RV Bi
ii−ji < 1 ,
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or, using the solution for Bi
ii−ji in (B70), if

(
η

(−)

CV − σ̄η
(−)

QV

)(
η

(−)

RY

)2
Et

[(
Ŷi−jt+1

)2
]

+ 2
(
η

(−)

CV − σ̄η
(−)

QV

)
η

(−)

RY η
(−)

RM Et

[
M̂ i−j

i−jt+1Ŷi−jt+1
]

> ζ
(−)

B5
Et

[(
M̂ i−j

i−jt+1

)2
]

.
(B74)

Evaluating this inequality at θ = 0 using the semi-partial elasticity signs from Table B2,
and using the signs for the cross-country differenced bond holding coefficients in (B73), the
left-hand side of (B74) is positive while the right-hand side is negative under Assumptions
1–3. By continuity, the inequality is preserved for values of θ in the neighborhood of zero.
Thus, γ(−)

RY < 0 and γ(−)
RM < 0, and therefore Et

[
R̂i

i−jt+1Ŷi+jt+1
]

≤ 0.
The second term is Et

[
R̂i

i−jt+1Ŷi−jt+1
]
. We again use the cross-country differenced real

returns in (43) to obtain

Et

[
R̂i

i−jt+1Ŷi−jt+1
]

= γ
(−)

RY Et

[(
Ŷi−jt+1

)2
]

+ γ
(−)

RM Et

[
M̂ i−j

i−jt+1Ŷi−jt+1
]

+ O(ϵ3) ,

and using γ(−)
RY < 0 and γ(−)

RM < 0 from above, we immediately obtain Et

[
R̂i

i−jt+1Ŷi−jt+1
]

< 0

under Assumptions 1–3. The third term, Et

[(
R̂i

i−jt+1

)2
]
, is squared and therefore non-

negative.
The signs of the three coefficients and three terms under expectation operators on the

right-hand side of (54) under Assumptions 1–3 imply that Et

[
R̂i

i−jt+1

]
< 0 + O(ϵ3), as

stated in Proposition 9. Importantly, these assumptions were also sufficient for domestic
bias in aggregate portfolio holdings, as shown in Proposition 8. Propositions 8 and 9
together capture an empirical pattern that we observe in Germany, Japan, and the United
States and document in Table 1 and Figure A4: strong domestic bias in aggregate portfolio
holdings despite relatively low domestic returns.

B.9 The Agent Non-Portfolio Problem

In the agent non-portfolio problem we solve for agent consumption and real wealth in terms
of exogenous variables and parameters. Unlike the aggregate system, where we solved for
cross-country differences and used market clearing conditions to derive country-specific
solutions, the agent system requires us to solve for both cross-country differences and
cross-country sums. We derive these solutions in the following two subsections.

B.9.1 The Agent Non-Portfolio System (−)

The agent Euler equation and budget constraint were first-order approximated, cross-
country differenced, and differenced with aggregate Euler and budget equations in (56)
and (57). We begin from these equations.
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Eliminating the real exchange rate from the cross-country differenced agent Euler
equation (56) using the intermediate solution for the real exchange rate in (41), we obtain

θŴ i
i−jt(ρ) + βR Et

[
C̃i−jt+1(ρ)

]
−

θ + βR

(
1
ρ

− ω

ρ̄

)
η

(−)

QV

Ŵ i
i−jt

= C̃i−jt(ρ) − βR

(
1
ρ

− ω

ρ̄

)(
η

(−)

QW Ŵ i
i−jt−1 + η

(−)

QV Ŷi−jt + η
(−)

QV V̂ i
i−jt

)
+O(ϵ2) ,

(B75)

where C̃i−jt(ρ) = Ĉi−jt(ρ) − Ĉi−jt denotes the difference between cross-country differenced
agent and aggregate consumption, using the tilde notation to denote differences between
agent and aggregate variables or parameters that integrate to zero.

Cross-country differenced aggregate real wealth Ŵ i
i−jt now appears in (B75). A third

equation, the law of motion for cross-country differenced aggregate real wealth in (38),
must therefore join the Euler equation (B75) and budget constraint (57) to form the
cross-country differenced agent system. We write the system in matrix form as

E (−)

0(ρ) Et

[
Ẑi−jt+1(ρ)

]
= E (−)

1(ρ)Ẑi−jt(ρ) + E (−)

2(ρ)Ŷi−jt

+ E (−)

3(ρ)V̂
i

i−jt(ρ) + E (−)

4(ρ)V̂
i

i−jt + O(ϵ2) ,
(B76)

where Ẑi−jt(ρ) =
[
Ŵ i

i−jt−1(ρ) C̃i−jt(ρ) Ŵ i
i−jt−1

]′
denotes the (3 × 1) vector of cross-

country differenced agent real wealth, cross-country differenced agent consumption in
deviations from aggregate, and cross-country differenced aggregate real wealth, and where

E (−)

0(ρ) =


1 0 −1
θ βR −

(
θ + βR

(
1
ρ

− ω
ρ̄

)
η(−)

QW

)
0 0 1

 ,

E (−)

1(ρ) =


R −1 −R

0 1 −βR
(

1
ρ

− ω
ρ̄

)
η(−)

QW

0 0 η(−)
W W

 , E (−)

2(ρ) =


0

−βR
(

1
ρ

− ω
ρ̄

)
η(−)

QY

η(−)
W Y

 ,

E (−)

3(ρ) =


R

0
0

 , and E (−)

4(ρ) =


0

−βR
(

1
ρ

− ω
ρ̄

)
η(−)

QV

η(−)
W V

 .

The matrix E (−)

0(ρ) is invertible if its determinant is non-zero. Therefore, we require that
det

(
E (−)

0(ρ)

)
= βR ̸= 0, which is always satisfied under Assumption 1.

Inverting E (−)

0(ρ), we can rewrite the system in (B76) to obtain the system as it appears
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in (59), where matrices of partial elasticities are given by

E (−)
Z(ρ)Z(ρ) =


E (−)

W (ρ)W (ρ) E (−)
W (ρ)C(ρ) E (−)

W (ρ)W

E (−)
C(ρ)W (ρ) E (−)

C(ρ)C(ρ) Ẽ (−)
C(ρ)W

E (−)
W W (ρ) E (−)

W C(ρ) E (−)
W W

=


R −1 η(−)

W W −R

− θ
β

1+θ
βR

θ
β −η(−)

QW

(
1−η(−)

W W

)(
1
ρ − ω

ρ̄

)
0 0 η(−)

W W

 ,

E (−)
Z(ρ)Y =


E (−)

W (ρ)Y

Ẽ (−)
C(ρ)Y

E (−)
W Y

=


η(−)

W Y(
1
ρ − ω

ρ̄

)(
η(−)

QW η(−)
W Y −η(−)

QY

)
η(−)

W Y

 , (B77)

E (−)
Z(ρ)V (ρ) =


E (−)

W (ρ)V (ρ)

E (−)
C(ρ)V (ρ)

E (−)
W V (ρ)

=


R

− θ
β

0

 , and

E (−)
Z(ρ)V =


E (−)

W (ρ)V

Ẽ (−)
C(ρ)V

E (−)
W V

=


η(−)

W V(
1
ρ − ω

ρ̄

)(
η(−)

QW η(−)
W V −η(−)

QV

)
η(−)

W V

 .

Before solving the cross-country differenced agent system, we decompose the partial
elasticity matrix E (−)

Z(ρ)Z(ρ) into eigenvalues and eigenvectors and establish the conditions
for a unique and stationary rational expectations solution following Blanchard and Kahn
(1980). The eigendecomposition of E (−)

Z(ρ)Z(ρ) is given by

E (−)

Z(ρ)Z(ρ) = V (−)

Z(ρ)Z(ρ)Λ
(−)

Z(ρ)Z(ρ)V
(−)−1

Z(ρ)Z(ρ) (B78)

where V (−)

Z(ρ)Z(ρ) is a matrix of eigenvectors of E (−)

Z(ρ)Z(ρ) and where Λ(−)
Z(ρ)Z(ρ) is a diagonal

matrix of eigenvalues of E (−)

Z(ρ)Z(ρ). We write the matrix of eigenvectors as

V (−)

Z(ρ)Z(ρ) =


ν (−)

W (ρ)W (ρ) ν (−)
W (ρ)C(ρ) ν (−)

W (ρ)W

ν (−)
C(ρ)W (ρ) ν (−)

C(ρ)C(ρ) ν (−)
C(ρ)W

ν (−)
W W (ρ) ν (−)

W C(ρ) ν (−)
W W



=


E (−)

W (ρ)C(ρ) E (−)
W (ρ)C(ρ) E (−)

W (ρ)C(ρ)

λ(−)
Z(ρ)W (ρ) − E (−)

W (ρ)W (ρ) λ(−)
ZC(ρ) − E (−)

W W λ(−)
ZW − E (−)

W (ρ)W (ρ) − E (−)
W (ρ)W

0 0 E (−)
W (ρ)C(ρ)

 ,

(B79)

and the diagonal matrix of eigenvalues as

Λ(−)

Z(ρ)Z(ρ) =


λ(−)

Z(ρ)W (ρ) 0 0
0 λ(−)

Z(ρ)C(ρ) 0
0 0 λ(−)

Z(ρ)W

 , (B80)
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where λ(−)
Z(ρ)W = η(−)

W W = λ(−)
ZW , with λ(−)

ZW given in equation (B39), and where

λ
(−)

Z(ρ)W (ρ) = 1
2
(
E (−)

W (ρ)W (ρ) + E (−)

C(ρ)C(ρ)

)
+
√

1
4
(
E (−)

W (ρ)W (ρ) − E (−)
C(ρ)C(ρ)

)2
+ E (−)

W (ρ)C(ρ)E
(−)
C(ρ)W (ρ)

(B81)

and
λ

(−)

Z(ρ)C(ρ) = 1
2
(
E (−)

W (ρ)W (ρ) + E (−)

C(ρ)C(ρ)

)
−
√

1
4
(
E (−)

W (ρ)W (ρ) − E (−)
C(ρ)C(ρ)

)2
+ E (−)

W (ρ)C(ρ)E
(−)
C(ρ)W (ρ)

. (B82)

B.9.2 Stationarity of the Agent System (−)

We now establish uniqueness and stationarity for the cross-country differenced agent system.
Following the same strategy as we did with the cross-country differenced aggregate system,
we consider the neighborhood of values for θ around the knife-edge non-stationary case of
θ = 0 to establish the result. We state the following proposition.

Proposition B1 (Stationarity of the Cross-Country Differenced Agent System). The ma-
trix E (−)

Z(ρ)Z(ρ) has two distinct real-valued eigenvalues, λ(−)
Z(ρ)W (ρ) and λ(−)

Z(ρ)C(ρ). Furthermore,
λ(−)

Z(ρ)W (ρ)

∣∣∣
θ=0

= 1/β and λ(−)
Z(ρ)C(ρ)

∣∣∣
θ=0

= 1, and

∂λ
(−)

Z(ρ)W (ρ)/∂θ
∣∣∣
θ=0

> 0 and ∂λ
(−)

ZC(ρ)/∂θ
∣∣∣
θ=0

< 0 . (B83)

The third eigenvalue λ(−)
Z(ρ)C equals the aggregate eigenvalue λ(−)

ZC, which lies between zero
and one if θ takes a small positive value (Proposition 5). Hence, there exists a θ > 0
that yields a unique and stationary rational expectations solution to the cross-country
differenced agent system in (59). All three eigenvalues are independent of ρ.

To prove this statement, it suffices to show that the discriminant in (B81) and (B82)
is positive. The discriminant, denoted ∆(−)

ρ , is given by

∆(−)

ρ = 1
4
(
E (−)

W (ρ)W (ρ) − E (−)

C(ρ)C(ρ)

)2
+ E (−)

W (ρ)C(ρ)E
(−)

C(ρ)W (ρ) . (B84)

Suppose θ > 0. The squared term is always positive or zero, so it suffices to show that
the second term is positive. We have

E (−)

W (ρ)C(ρ)E
(−)

C(ρ)W (ρ) = θ

β
> 0 , (B85)

where we have used the partial elasticities in (B77) under Assumptions 1 and 2. Suppose
θ = 0. The second term is zero, E (−)

W (ρ)C(ρ)E
(−)
C(ρ)W (ρ) = 0, but the squared term is positive,

since E (−)
W (ρ)W (ρ)

∣∣∣
θ=0

− E (−)
C(ρ)C(ρ)

∣∣∣
θ=0

= 1/β −1 > 0 under Assumptions 1, so the discriminant
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Table B3 – Agent Cross-Country Differenced Partial Elasticities at θ = 0

Partial
Elasticity

Value of Partial Elasticity Derivative with Respect to θ

Evaluated at θ = 0 Evaluated at θ = 0

Expression Sign Expression Sign

E (−)
W (ρ)W (ρ)

1
β + − 1

β −

E (−)
W (ρ)C(ρ) −1 − 0 ·

E (−)
C(ρ)W (ρ) 0 · − 1

β −

E (−)
C(ρ)C(ρ) 1 + 1 + 1

β +

Notes. Column one lists the partial elasticities that appear in the cross-country differenced
aggregate system (36). Columns two and four, respectively, give expressions for the partial
elasticities and their derivatives with respect to θ, both evaluated at θ = 0. Columns three and
five, respectively, give the signs of the partial elasticities and their derivatives, both evaluated at
θ = 0. Signs are established under Assumptions 1 and 2.

∆(−)
ρ is again positive. Thus, θ ≥ 0 is sufficient to show that (B81) and (B82) are distinct

and real-valued eigenvalues.
As in the cross-country differenced aggregate problem, the case where θ = 0 serves as

a helpful benchmark here for proving the further statements in Proposition B1. In Table
B3, we evaluate at θ = 0 the partial elasticities in (B77) and their derivatives with respect
to θ.

Proposition B1 states that λ(−)
Z(ρ)W (ρ) evaluated at θ = 0 exceeds one and λ(−)

Z(ρ)C(ρ)

evaluated at θ = 0 equals one. Using Table B3 to evaluate (B81) and (B82) at θ = 0,

λ
(−)

Z(ρ)W (ρ)

∣∣∣
θ=0

= E (−)

W W

∣∣∣
θ=0

> 1 and λ
(−)

Z(ρ)C(ρ)

∣∣∣
θ=0

= E (−)

CC

∣∣∣
θ=0

= 1 . (B86)

Proposition B1 further states that the partial derivative of λ(−)
Z(ρ)W (ρ) with respect to

θ evaluated at θ = 0 is positive, and the partial derivative of λ(−)
Z(ρ)C(ρ) with respect to θ

evaluated at θ = 0 is negative. To establish this result, we differentiate the eigenvalues
with respect to θ,

∂λ(−)
±

∂θ
= 1

2

∂E (−)
C(ρ)C(ρ)

∂θ
+

∂E (−)
W (ρ)W (ρ)

∂θ


± 1

2

[
1
4
(
E (−)

C(ρ)C(ρ) − E (−)

W (ρ)W (ρ)

)2
+ E (−)

W (ρ)C(ρ)E
(−)

C(ρ)W (ρ)

]− 1
2

×

1
2
(
E (−)

C(ρ)C(ρ) − E (−)

W (ρ)W (ρ)

)∂E (−)
C(ρ)C(ρ)

∂θ
−

∂E (−)
W (ρ)W (ρ)

∂θ


+

∂E (−)
W (ρ)C(ρ)

∂θ
E (−)

C(ρ)W (ρ) + E (−)

W (ρ)C(ρ)
∂E (−)

C(ρ)W (ρ)

∂θ

 ,

(B87)

39



where the “+” case corresponds to λ(−)
Z(ρ)W (ρ) and the “−” case corresponds to λ(−)

Z(ρ)C(ρ).
Using Table B3, we evaluate (B87) at θ = 0 to obtain

∂λ(−)
Z(ρ)W (ρ)

∂θ

∣∣∣∣∣∣
θ=0

= 1
1 − β

− 1
β

and
∂λ(−)

Z(ρ)C(ρ)

∂θ

∣∣∣∣∣∣
θ=0

= 1
β

− 1
1 − β

. (B88)

The derivatives with respect to λ(−)
Z(ρ)W (ρ) and λ(−)

Z(ρ)C(ρ) are positive and negative,
respectively, if 1/2 < β < 1 , which is satisfied under Assumption 1.

Finally, Proposition B1 states that the three eigenvalues of the matrix E (−)

Z(ρ)Z(ρ)

are independent of ρ. This result follows straightforwardly from the definitions of the
eigenvalues in (B40), (B81), and (B82), together with the definitions of the partial
elasticities in (B36) and (B77).

In view of the eigenvalues at θ = 0 in (B44) and (B86), and the derivatives at θ = 0
in (B49), (B88) and (B88) under Assumptions 1 and 2, a small positive value for θ

pushes λ(−)
Z(ρ)C(ρ) and λ(−)

Z(ρ)C below one while pushing λ(−)
Z(ρ)W (ρ) further above one, thus

satisfying the conditions in Blanchard and Kahn (1980) for a unique and stationary
rational expectations solution to the cross-country differenced agent system in (59).

B.9.3 Intermediate Agent Non-Portfolio Solution (−)

We now derive intermediate solutions for agent real wealth and consumption in terms of
lagged agent and aggregate state variables, exogenous variables and parameters, and the
endogenous agent and aggregate portfolio valuation effects. Using the eigendecomposition
in (59), we re-write the agent cross-country differenced system in (B76) as

V (−)−1

Z(ρ)Z(ρ) Et

[
Ẑi−jt+1(ρ)

]
= Λ(−)

Z(ρ)Z(ρ)V
(−)−1

Z(ρ)Z(ρ)Ẑi−jt(ρ)

+ V (−)−1

Z(ρ)Z(ρ)

(
E (−)

Z(ρ)Y Ŷi−jt + E (−)

Z(ρ)V (ρ)V̂
i

i−jt(ρ) + E (−)

Z(ρ)V V̂ i
i−jt

)
+ O(ϵ2) ,

(B89)

and from (B89) we extract the equation associated with the unstable eigenvalue λ(−)
Z(ρ)W (ρ),

Et

[
Ẑi−jt+1(ρ)

]
= λ

(−)

Z(ρ)W (ρ)Ẑi−jt(ρ)

+
[(

λ
(−)

Z(ρ)W − E (−)

W (ρ)W

)
η

(−)

W Y − E (−)

W (ρ)W (ρ)E
(−)

W (ρ)Y − E (−)

W (ρ)C(ρ)Ẽ
(−)

C(ρ)Y

]
Ŷi−jt

+
[(

λ
(−)

Z(ρ)W − E (−)

W (ρ)W

)
η

(−)

W V − E (−)

W (ρ)W (ρ)E
(−)

W (ρ)V − E (−)

W (ρ)C(ρ)Ẽ
(−)

C(ρ)V

]
V̂ i

i−jt

+
[(

λ
(−)

Z(ρ)C(ρ) − E (−)

W (ρ)W (ρ)

)
E (−)

W (ρ)V (ρ) − E (−)

W (ρ)C(ρ)E
(−)

C(ρ)V (ρ)

]
Ṽ i

i−jt(ρ) + O(ϵ2) ,

(B90)

where Ẑi−jt+1(ρ) =
(
λ(−)

Z(ρ)C(ρ) − E (−)
W (ρ)W (ρ)

)
Ŵ i

i−jt(ρ) − E (−)
W (ρ)C(ρ)C̃i−jt+1(ρ).

Because λ(−)
Z(ρ)W (ρ) is greater than one, the left-hand side of (B51) must be zero to rule
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out explosive paths. Setting the left-hand side to zero, we obtain

C̃i−jt(ρ) = η
(−)

C(ρ)W (ρ)W̃
i
i−jt−1(ρ) + η

(−)

C(ρ)C(ρ)Ṽ
i

i−jt(ρ)

+ η̃
(−)

C(ρ)V V̂ i
i−jt + η̃

(−)

C(ρ)Y Ŷi−jt + O(ϵ2) ,
(B91)

and using (B91) to eliminate C̃i−jt(ρ) from the cross-country differenced agent budget
constraint in (57), we obtain

W̃ i
i−jt(ρ) = η

(−)

W (ρ)W (ρ)W̃
i
i−jt−1(ρ) + η

(−)

W (ρ)V (ρ)Ṽ
i

i−jt(ρ)

+ η̃
(−)

W (ρ)V V̂ i
i−jt + η̃

(−)

W (ρ)Y Ŷi−jt + O(ϵ2) .
(B92)

Writing the intermediate solutions (B91) and (B92) in more compact matrix form, we
obtain (61), where the semi-partial elasticity matrices are given by

η
(−)

Z(ρ)W (ρ) =
η(−)

W (ρ)W (ρ)

η(−)
C(ρ)W (ρ)

 =
 λ(−)

Z(ρ)C(ρ)

E (−)
W (ρ)W (ρ) − λ(−)

Z(ρ)C(ρ)

 ,

η
(−)

Z(ρ)V (ρ) =
η(−)

W (ρ)V (ρ)

η(−)
C(ρ)V (ρ)

 =


1−θ

β
−

(
E (−)

W (ρ)W (ρ)−λ(−)

Z(ρ)C(ρ)

)
E (−)

W (ρ)V (ρ)−E (−)

C(ρ)V (ρ)

λ(−)

Z(ρ)W (ρ)(
E (−)

W (ρ)W (ρ)−λ(−)

Z(ρ)C(ρ)

)
E (−)

W (ρ)V (ρ)−E (−)

C(ρ)V (ρ)

λ(−)

Z(ρ)W (ρ)

 ,

η̃
(−)

Z(ρ)V =
η̃(−)

W (ρ)V

η̃(−)
C(ρ)V

 =


(
σ̄ − σ(ρ)

)η(−)

QV
−η(−)

QW
η(−)

W V

λ(−)

Z(ρ)W (ρ)(
σ(ρ) − σ̄

)η(−)

QV
−η(−)

QW
η(−)

W V

λ(−)

Z(ρ)W (ρ)

 , and (B93)

η̃
(−)

Z(ρ)Y =
η̃(−)

W (ρ)Y

η̃(−)
C(ρ)Y

 =


(
σ̄ − σ(ρ)

)η(−)

QY
−η(−)

QW
η(−)

W Y

λ(−)

Z(ρ)W (ρ)(
σ(ρ) − σ̄

)η(−)

QY
−η(−)

QW
η(−)

W Y

λ(−)

Z(ρ)W (ρ)

 .

Next, we follow a similar procedure to derive an intermediate solution to the agent’s
cross-country summed non-portfolio system.

B.9.4 The Agent Non-Portfolio System (+)

We use the first-order approximate agent and aggregate Euler equations in (28) and (29)
and the first-order approximate agent and aggregate budget constraints in (30) to derive
the cross-country summed agent system in deviations from aggregates. This system is
simpler than the cross-country differenced agent system, first because the real exchange
rate drops out of the system and second because the system has only one predetermined
state variable, agent real wealth. Aggregate real wealth does not enter because its
cross-country sum is zero with assets in zero net supply.
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Using first-order approximate agent and aggregate Euler equations, we obtain the
first-order approximate cross-country summed agent Euler equation in deviations from
aggregates,

θ
(
Ŵ i

i+jt(ρ) − Ŵ i
i+jt

)
+ βR Et

[(
Ĉi+jt+1(ρ) − Ĉi+jt+1

)]
=
(
Ĉi+jt(ρ) − Ĉi+jt

)
− ρ̄

ω

(
1
ρ

− ω

ρ̄

)
Ŷi+jt + O(ϵ2) ,

(B94)

where the subscript i+j on agent variables denotes cross-country sums between agents with
identical coefficients of relative risk aversion. Similarly, using first-order approximate agent
and aggregate budget constraints, we obtain the first-order approximate cross-country
summed agent budget constraint in deviations from aggregates,

(
Ŵ i

i+jt(ρ) − Ŵ i
i+jt

)
= R

(
Ŵ i

i+jt−1(ρ) − Ŵ i
i+jt−1

)
−
(
Ĉi+jt(ρ) − Ĉi+jt

)
+ R

(
V̂ i

i+jt(ρ) − V̂ i
i+jt

)
+ O(ϵ2) ,

(B95)

where we have introduced a new variable V̂ i
i+jt(ρ) in the budget constraint, which we call

the cross-country summed agent portfolio valuation effect and define as

V̂ i
i+jt(ρ) = Bi

ii+ji(ρ)R̂i
i−jt , where Bi

ii+ji(ρ) = Bi
ii(ρ) + Bi

ji(ρ) . (B96)

Unlike in the cross-country differenced agent problem, neither the cross-country summed
Euler equation in (B94) nor the cross-country summed budget constraint in (B95) depends
on the real exchange rate.

The absence of the real exchange rate allows use to write the cross-country summed
agent Euler equation and budget constraint directly in deviations from aggregates. Con-
tinuing to use tildes to indicate the vanishing integral property, we have

W̃ i
i+jt(ρ) = Ŵ i

i+jt(ρ) − Ŵ i
i+jt , C̃i+jt(ρ) = Ĉi+jt(ρ) − Ĉi+jt ,

and Ṽ i
i+jt(ρ) = V̂ i

i+jt(ρ) − V̂ i
i+jt ,

(B97)

where, due to our assumption that bonds are in zero net supply, cross-country summed
aggregate real wealth and portfolio valuation effects equal zero, Ŵ i

i+jt = V̂ i
i+jt = 0. To

maintain consistency in our notation, however, we still use the tilde to denote cross-country
summed agent real wealth and portfolio valuation effects in deviations from aggregates.

The two equations (B94) and (B95) form the cross-country summed agent system,
which we write in matrix form as

E (+)

0(ρ) Et

[
Z̃i+jt+1(ρ)

]
= E (+)

1(ρ)Z̃i+jt(ρ) + Ẽ
(+)

2(ρ)Ŷi+jt + E (+)

3(ρ)Ṽ
i

i+jt(ρ) + O(ϵ2) , (B98)
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where Z̃i+jt(ρ) =
[
W̃ i

i+jt−1(ρ) C̃i+jt(ρ)
]′

denotes the (2 × 1) vector of cross-country
summed agent real wealth and consumption in deviation from aggregate, where

E (+)

0(ρ) =

 1 0
θ

βR
1

 , E (+)

1(ρ) =

R −1
0 1

βR

 ,

Ẽ
(+)

2(ρ) =

 0
− 1

βR
ρ̄
ω

(
1
ρ

− ω
ρ

)
 , and E (+)

3(ρ) =
R

0

 .

(B99)

The matrix E (+)
0(ρ) is invertible if its determinant is non-zero. We have

det
(
E (+)

0(ρ)

)
= 1 ̸= 0 , (B100)

so E (+)

0(ρ) is invertible, and we rewrite the cross-country summed agent system as

Et

[
Z̃i+jt+1(ρ)

]
= E (+)

Z(ρ)Z(ρ)Z̃i+jt(ρ) + Ẽ
(+)

Z(ρ)Y Ŷi+jt + E (+)

Z(ρ)V (ρ)Ṽ
i

i+jt(ρ) + O(ϵ2) , (B101)

where

E (+)

Z(ρ)Z(ρ) =
E (+)

W (ρ)W (ρ) E (+)
W (ρ)C(ρ)

E (+)
C(ρ)W (ρ) E (+)

C(ρ)C(ρ)

 =

 R −1
− θ

β
1+θ
βR

 ,

Ẽ
(+)

Z(ρ)Y =
E (+)

W (ρ)Y

Ẽ (+)
C(ρ)Y

 =

 0
− 1

βR
ρ̄
ω

(
1
ρ

− ω
ρ

)
 , and (B102)

E (+)

Z(ρ)V (ρ) =
E (+)

W (ρ)V (ρ)

E (+)
C(ρ)V (ρ)

 =

 R

− θ
β

 .

Before solving the cross-country summed agent system, we decompose the partial
elasticity matrix E (+)

Z(ρ)Z(ρ) into eigenvalues and eigenvectors and establish the conditions
for a unique and stationary rational expectations solution following Blanchard and Kahn
(1980). The eigendecomposition of E (+)

Z(ρ)Z(ρ) is given by

E (+)

Z(ρ)Z(ρ) = V (+)

Z(ρ)Z(ρ)Λ
(+)

Z(ρ)Z(ρ)V
(+)−1

Z(ρ)Z(ρ) (B103)

where V (+)

Z(ρ)Z(ρ) is a matrix of eigenvectors of E (+)

Z(ρ)Z(ρ) and where Λ(+)
Z(ρ)Z(ρ) is a diagonal
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matrix of eigenvalues of E (+)

Z(ρ)Z(ρ),

V (+)

Z(ρ)Z(ρ) =
ν (+)

W (ρ)W (ρ) ν (+)
W (ρ)C(ρ)

ν (+)
C(ρ)W (ρ) ν (+)

C(ρ)C(ρ)


=
 E (+)

W (ρ)C(ρ) E (+)
W (ρ)C(ρ)

λ(+)
Z(ρ)W (ρ) − E (+)

W (ρ)W (ρ) λ(+)
Z(ρ)C(ρ) − E (+)

W (ρ)W (ρ)

 , and

Λ(+)

Z(ρ)Z(ρ) =
λ(+)

Z(ρ)W (ρ) 0
0 λ(+)

Z(ρ)C(ρ)

 ,

(B104)

where
λ

(+)

Z(ρ)W (ρ) = 1
2
(
E (+)

W (ρ)W (ρ) + E (+)

C(ρ)C(ρ)

)
+
√

1
4
(
E (+)

W (ρ)W (ρ) − E (+)
C(ρ)C(ρ)

)2
+ E (+)

W (ρ)C(ρ)E
(+)
C(ρ)W (ρ)

(B105)

and
λ

(+)

Z(ρ)C(ρ) = 1
2
(
E (+)

W (ρ)W (ρ) + E (+)

C(ρ)C(ρ)

)
−
√

1
4
(
E (+)

W (ρ)W (ρ) − E (+)
C(ρ)C(ρ)

)2
+ E (+)

W (ρ)C(ρ)E
(+)
C(ρ)W (ρ)

. (B106)

B.9.5 Stationarity of the Agent System (+)

We now establish uniqueness and stationarity for the cross-country differenced agent
system. Stationarity of the system follows straightforwardly from a comparison of the
partial elasticity matrix E (+)

Z(ρ)Z(ρ) in (B102) with the partial elasticity matrix E (−)

Z(ρ)Z(ρ) in
(B77). We state the following proposition.

Proposition B2 (Stationarity of the Cross-Country Summed Agent System). The
eigenvalues of E (+)

Z(ρ)Z(ρ) are given by

λ
(+)

Z(ρ)W (ρ) = λ
(−)

Z(ρ)W (ρ) and λ
(+)

Z(ρ)C(ρ) = λ
(−)

Z(ρ)C(ρ) . (B107)

From Proposition B1, there exists a θ > 0 that yields a unique and stationary rational
expectations solution to the cross-country summed agent system in (B101).

Let
[
E (−)

Z(ρ)Z(ρ)

]
33

denote the (2 × 2) submatrix of E (−)

Z(ρ)Z(ρ) formed by deleting the third
row and third column from E (−)

Z(ρ)Z(ρ). Then, by inspection, E (+)

Z(ρ)Z(ρ) =
[
E (−)

Z(ρ)Z(ρ)

]
33

, and
the eigenvalues of E (+)

Z(ρ)Z(ρ) equal the eigenvalues of the submatrix
[
E (−)

Z(ρ)Z(ρ)

]
33

. That is,
λ(+)

Z(ρ)W (ρ) = λ(−)
Z(ρ)W (ρ) and λ(+)

Z(ρ)C(ρ) = λ(−)
Z(ρ)C(ρ). Thus, the stationarity and uniqueness

conditions for the cross-country summed and differenced agent systems are the same, and
satisfied under Assumptions 1 and 2 as shown in Proposition B1.
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B.9.6 Intermediate Agent Non-Portfolio Solution (+)

We now derive intermediate solutions for cross-country summed agent real wealth and
consumption in deviation from aggregate, written in terms of lagged agent state variables,
exogenous variables and parameters, and the endogenous agent portfolio valuation effect.
Using the eigendecomposition in (B103), we re-write the system in (B76) as

V (+)−1

Z(ρ)Z(ρ) Et

[
Z̃i+jt+1(ρ)

]
= Λ(+)

Z(ρ)Z(ρ)V
(+)−1

Z(ρ)Z(ρ)Z̃i+jt(ρ)

+ V (+)−1

Z(ρ)Z(ρ)

(
E (+)

Z(ρ)Y Ŷi+jt + E (+)

Z(ρ)V (ρ)V̂
i

i+jt(ρ)
)

+ O(ϵ2) ,
(B108)

and from (B108) we extract the equation associated with the unstable eigenvalue λ(+)
Z(ρ)W (ρ),

Et

[
Z̃i+jt+1(ρ)

]
= λ

(+)

Z(ρ)W (ρ)Z̃i+jt(ρ) − E (+)

W (ρ)C(ρ)E
(+)

C(ρ)Y Ŷi+jt

+
[(

λ
(+)

Z(ρ)C(ρ) − E (+)

W (ρ)W (ρ)

)
E (+)

W (ρ)W (ρ) − E (+)

W (ρ)C(ρ)E
(+)

C(ρ)V (ρ)

]
Ṽ i

i+jt(ρ) + O(ϵ2) ,
(B109)

where Z̃i+jt+1(ρ) =
(
λ(+)

Z(ρ)W (ρ) − E (+)
W (ρ)W (ρ)

)
W̃ i

i+jt(ρ) − E (+)
W (ρ)W (ρ)C̃i+jt+1(ρ).

Because λ(+)
Z(ρ)W (ρ) is greater than one, the left-hand side of (B109) must be zero to

rule out explosive paths. Setting the left-hand side to zero, we obtain

C̃i+jt(ρ) = η
(+)

C(ρ)W (ρ)W̃
i
i+jt−1(ρ) + η̃

(+)

C(ρ)Y Ŷi+jt + η
(+)

C(ρ)V (ρ)Ṽ
i

i+jt(ρ) + O(ϵ2) , (B110)

and using (B110) to eliminate C̃i+jt(ρ) from the cross-country summed agent budget
constraint in (B95), we obtain

W̃ i
i+jt(ρ) = η

(+)

W (ρ)W (ρ)W̃
i
i+jt−1(ρ) + η̃

(+)

C(ρ)Y Ŷi+jt + η
(+)

W (ρ)V (ρ)Ṽ
i

i+jt(ρ) + O(ϵ2) , (B111)

where the cross-country summed agent wealth and consumption semi-partial elasticity
matrices are given by

η
(+)

Z(ρ)W (ρ) =
η(+)

W (ρ)W (ρ)

η(+)
C(ρ)W (ρ)

 =
 λ(+)

Z(ρ)C(ρ)

E (+)
W (ρ)W (ρ) − λ(+)

Z(ρ)C(ρ)

 ,

η̃
(+)

Z(ρ)Y =
η̃(+)

W (ρ)Y

η̃(+)
C(ρ)Y

 =


Ẽ (+)

C(ρ)Y

λ(+)

Z(ρ)W (ρ)

−
Ẽ (+)

C(ρ)Y

λ(+)

Z(ρ)W (ρ)

 , and (B112)

η
(+)

Z(ρ)V (ρ) =
η(+)

W (ρ)V (ρ)

η(+)
C(ρ)V (ρ)

 =


1−θ

β
−

(
E (+)

W (ρ)W (ρ)−λ(+)

Z(ρ)C(ρ)

)
E (−)

W (ρ)V (ρ)−E (−)

C(ρ)V (ρ)

λ(+)

Z(ρ)W (ρ)(
E (+)

W (ρ)W (ρ)−λ(+)

Z(ρ)C(ρ)

)
E (−)

W (ρ)V (ρ)−E (−)

C(ρ)V (ρ)

λ(+)

Z(ρ)W (ρ)

 .
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Writing the intermediate solutions in (B110) and (B111) in matrix form, we have
W̃ i

i+jt(ρ)
C̃i+jt(ρ)

 = η
(+)

Z(ρ)W (ρ)W̃
i
i+jt−1(ρ) + η̃

(+)

Z(ρ)Y Ŷi+jt + η
(+)

Z(ρ)V (ρ)Ṽ
i

i+jt(ρ) + O(ϵ2) . (B113)

As with the cross-country differenced solution in (61), the cross-country summed
solution in (B113) is intermediate in that it depends on the endogenous portfolio valuation
effect Ṽ i

i+jt(ρ). This effect in turn depend on the endogenous steady-state cross-country
sum of agent portfolio holdings, for which we solve next.

B.10 The Agent Portfolio Problem

We now solve for zero-order approximate cross-country differenced and summed agent
portfolio holdings. These solutions then combine to yield country-specific solutions for
the agent’s holdings of the domestic and international bond.

To derive cross-country differenced agent portfolio holdings, we begin from equation
(62). Using the real exchange rate in (41), the definition of the cross-country differenced
agent portfolio valuation effect in (58), and the first-order approximate intermediate solu-
tions for cross-country differenced agent consumption in (61), we obtain the intermediate
solution in (63). The collection of parameters ζ (−)

B(ρ) in (63) is given by

ζ
(−)

B(ρ) = 1
η(−)

C(ρ)V (ρ)


1 − 1

λ(−)
Z(ρ)W (ρ)

η
(−)

QY +
η(−)

QW η(−)
W Y

λ(−)
Z(ρ)W (ρ)


− 1

η(−)
C(ρ)V (ρ)

η(−)
CY − η(−)

QY
ω
ρ̄

η(−)
CV − η(−)

QV
ω
ρ̄


1 − 1

λ(−)
Z(ρ)W (ρ)

η
(−)

QV +
η(−)

QW η(−)
W V

λ(−)
Z(ρ)W (ρ)

 .

(B114)

To derive cross-country summed agent portfolio holdings, we begin from equation (64).
Using the real exchange rate in (41), the definition of the cross-country summed agent
portfolio valuation effect in (B96), and the first-order approximate intermediate solutions
for cross-country summed agent consumption in (B113), we obtain the intermediate
solution in (65). The collection of parameters ζ (+)

B(ρ) in (65) is given by

ζ
(+)

B(ρ) = ρ̄

ω

1
η(+)

C(ρ)V (ρ)

1 − 1
(1 − θ)λ(−)

Z(ρ)W (ρ)

 . (B115)

The solutions in equations (63) and (65) are intermediate because the cross-country
differenced real return appears on the right-hand side of each. Final solutions obtain
straightforwardly by eliminating the cross-country differenced real return using the first-
order approximate general solution in (43). For brevity, we omit this derivation here,
noting that (63) and (65) are sufficient to establish our main result for agent portfolio
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Table B4 – Agent Semi-Partial Elasticities at θ = 0.

Semi-Partial
Elasticity

Evaluation at θ = 0

Expression Sign

η(−)
C(ρ)V (ρ)

1−β
β +

η(+)
C(ρ)V (ρ)

1−β
β +

Notes. The table shows semi-partial elasticities from the cross-country differenced and summed
agent non-portfolio problems, evaluated at θ = 0. Column two give an expression for each
elasticity, and column three gives its sign under Assumptions 1 and 2.

holdings in Proposition (10). For use later, we evaluate two semi-partial elasticities that
appear in these solutions at θ = 0 and report them in Table B4.

B.10.1 Proof of Proposition 10

Proposition 10 establishes sufficient conditions for international portfolio bias in agent
portfolio holdings for a subset of risk-tolerant agents. These conditions simultaneously
satisfy the conditions for domestic bias in aggregate portfolio holdings in Proposition 8
and for negative expected cross-country differenced real returns in Proposition 9.

We begin with equation (66) for agent holdings of the domestic bond in country i.
Using the intermediate solutions for cross-country differenced and summed agent holdings
of this bond in (63) and (65), respectively, we obtain

B̃i
ii(ρ) = 1

2

(
1
ρ

− ω

ρ̄

)Et

[
R̂i

i−jt+1

(
ζ (−)

B(ρ)Ŷi−jt+1 + ζ (+)
B(ρ)Ŷi+jt+1

)]
Et

[(
R̂i

i−jt+1

)2
] + O(ϵ) , (B116)

from which a final solution in terms of model parameters can be obtained directly using
first-order approximate realized real returns in (42).

In the proof of Proposition (9) we established Et

[
R̂i

i−jt+1Ŷi−jt+1
]

≤ 0 and Et

[
R̂i

i−jt+1Ŷi+jt+1
]

<

0 under Assumptions 1 and 2. To establish the sign of B̃i
ii(ρ), it remains to establish the

signs of ζ (−)
B(ρ) and ζ (+)

B(ρ).
We first establish the sign of ζ (−)

B(ρ) assuming θ = 0. Splitting the expression in (B114)
into four terms, we have

ζ
(−)

B(ρ) = ζ
(−)(T1)
B(ρ)

(
ζ

(−)(T2)
B(ρ) + ζ

(−)(T3)
B(ρ) ζ

(−)(T4)
B(ρ)

)
, (B117)
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where
ζ

(−)(T1)
B(ρ) = 1

η(−)
C(ρ)V (ρ)

,

ζ
(−)(T2)
B(ρ) =

1 − 1
λ(−)

Z(ρ)W (ρ)

η
(−)

QY + 1
λ(−)

Z(ρ)W (ρ)
η

(−)

QW η
(−)

W Y ,

ζ
(−)(T3)
B(ρ) = −

η(−)
C oo − σ̄η(−)

QY

η(−)
CV − σ̄η(−)

QV

, and

ζ
(−)(T4)
B(ρ) =

1 − 1
λ(−)

Z(ρ)W (ρ)

η
(−)

QV + 1
λ(−)

Z(ρ)W (ρ)
η

(−)

QW η
(−)

W V .

(B118)

Using Table B2, Table B4, and the expression for λ(−)
Z(ρ)W

∣∣∣
W =0

in Proposition B1, we obtain

ζ
(−)(T1)
B(ρ)

∣∣∣∣
θ=0

= β

1 − β

∣∣∣∣∣
θ=0

> 0 ,

ζ
(−)(T2)
B(ρ)

∣∣∣∣
θ=0

= (1 − β)

1 + β

(
1 − ϕ2

)
(1 − σ̄)

1 − (1 − σ̄)ϕ2

 > 0 ,

ζ
(−)(T3)
B(ρ)

∣∣∣∣
θ=0

= −ϕ(1 − σ̄)(1 − β)2

β

1 − (1 − σ̄)ϕ2

1 − ϕ
< 0 , and

ζ
(−)(T4)
B(ρ)

∣∣∣∣
θ=0

= −(1 − β)2

β

ϕ2

1 − ϕ

(
1 + 1 − ϕ2 − (1 − β)(1 − ϕ)

1 − ϕ2

)
< 0 .

(B119)

Next, we establish the sign of ζ (+)
B(ρ) assuming θ = 0. Using Table B2 and the expression

for the eigenvalue λ(−)
Z(ρ)W in Proposition B1, we obtain ζ (+)

B(ρ)

∣∣∣
θ=0

= βρ̄/ω > 0 under
Assumptions 1 and 2. By continuity, the signs of ζ (−)

B(ρ) and ζ (+)
B(ρ) are preserved for small

positive values of θ.
Returning to equation (B116), we conclude that B̃i

ii(ρ) is negative for any ρ < ρ̄/ω

under Assumptions 1–3, and that B̃i
ii(ρ) approaches negative infinity as ρ approaches zero

from above,
lim
ρ↓0

B̃i
ii(ρ) = −∞ . (B120)

Thus, recalling that B̃i
ii(ρ) ≡ Bi

ii(ρ)−Bi
ii, there exists a ρ∗ ∈ (0, ρ̄/ω) such that Bi

ii(ρ) < 0
for any ρ < ρ∗ and any finite value of Bi

ii.
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